

USER MANUAL
November 2025 | Version 05

Naturally innovative

A leader in equipment and products for the maple syrup industry, LAPIERRE EQUIPMENT distinguishes itself by its ability to innovate and develop high-performance solutions. This is what enables it to make significant changes in production techniques and processes in order to increase crop yield of high quality syrup.

LAPIERRE EQUIPMENT has a wealth of experience accumulated over three generations of maple syrup producers. These are also people driven by passion and a deep desire to help the industry evolve with the utmost respect for nature.

Honoured to serve your customers

LAPIERRE EQUIPMENT is honoured to actively assist maple syrup producers during the sugar season.

Today you have made a wise choice for at least two good reasons: the superior quality of our products and the exceptional quality of all our expert advisers in the region.

We sincerely appreciate your trust. And we will be happy to serve you again in your future equipment purchases, regardless of the size of your sugar bush.

Thank you!

Lapierre Equipment Inc.

99 Rue de l'Escale, Saint-Ludger (QC) Canada GOM 1W0 819 548.5454 | 1 833 548.5454 | info@elapierre.com www.elapierre.com

Foreword

The entire Lapierre team welcomes you to the great family of DATACER™ users.

Your goal of optimizing your yield, your need to optimize your time and your desire to get through the sugaring-off period with peace of mind led us to develop the DATACER™ sugar bush monitoring and control system.

Season after season, we always improve our offer to better meet your needs in all simplicity. Furthermore, we ensure a service that meets your expectations thanks to our network of sales representatives and distributors available throughout Canada and the United States.

The entire LAPIERRE team wishes you the best for the upcoming sugar season!

This manual is divided into 5 main sections.

- Equipment description
- Equipment installation
- Interface settings
- System use
- Problems and solutions

Tables of contents will allow you to quickly find the page that interests you. Furthermore, you can return to the summary table of contents by clicking on the **DAT**ACER logo in the upper left-hand corner, regardless of the document page.

Throughout the manual you will find various pictograms to draw your attention to specific points.

Icon	Message
A	Safety, danger for the user.
<u> </u>	Vigilance, step not to be forgotten for proper functioning and to avoid damage to the equipment.
*	Tip, useful method to be aware of.

You will also find guidelines on the photos or screenshots to better follow the order of the steps and the vocabulary used.

Guideline	Message
1	Order of steps to follow.
1	Reference note explaining a specific concept.

Synthetic table of contents

Key	steps following purchase	5
Det	tailed table of contents	6
List	of figures	.13
1.	Equipment description	.17
	derstand the role and specifications of DATACER™ equipment. You will find a detailed cription of each of the transmitters along with their sensors and respective peripherals.	
2.	Equipment Installation	.51
syst	erview of the radio communication principles applied to the DATACER™ system to optimize tem responsiveness. You will find all the essential information to correctly install each of ur different transmitters, sensors and peripherals.	!
3.	Interface settings	.23
you	nmary of the vocabulary and data structure used in the interfaces to better understand hower DATACER TM system can adapt to your reality. You will also find all the necessary steps to sthe different interfaces before using the system's features.	
4.	System use1	.93
of t con mea des	in steps to follow for switching on and off the various equipment and devices, presentation the interfaces, methods of accessing the DATACER™ interface, how to establish mmunication between the DATACER™ base and the other radio transmitters, and the aning of the transmitters' LEDs. You will also find all the elements necessary for performing sired functions such as data visualization, as well as control and automation of the uipment.	
5.	Problems and solutions	<u> 1</u> 91
solu	e most frequently encountered problems, their probable causes, as well as the associated utions. Do not hesitate to contact your LAPIERRE representative or distributor if you need istance.	
6.	Appendices3	302
Add	ditional information.	

Key steps following purchase

Here is a summary of the main steps to follow after purchasing your DATACER™ system.

- 1) Install your equipment according to the recommendations in the manual and your LAPIERRE advisor (see section 2 page 51).
- 2) Turn on the DATACER™ base (see section 4.1.1 page 196).
- 3) Access DATACER™ interface locally or remotely (see section 4.4 page 222).
- 4) Set up your interfaces before using the system features (see section 3 page 123).
- 5) Turn on your Transmitters (see sections 4.1.3 page 202 and 4.1.5 page 204).
- 6) Establish communication between all Transmitters in the network and the base (see section 4.1.6 page 206).
- 7) At the end of the season, shut down the DATACER™ base and the Transmitters according to the instructions in the manual (see section 4.3 page 215).

List	of figure	es	13
1.	Equipn	nent description	17
1.1	Pr	inciple	18
1.2	DA	ATACER™ base	18
1.3	Tr	ansmitters	21
	1.3.1	Vacuum (V)	21
	1.3.2	Sonar Tank Level (L)	25
	1.3.3	Pressure (P)	26
	1.3.4	Combined (V, L, P)	27
1.4	DA	ATACER™ station	28
	1.4.1	Vacuum pump start relay without drive	31
	1.4.2	Connection for start/stop and speed variation of a vacuum pump with drive	32
	1.4.3	Vacuum modulation valve	32
	1.4.4	Emergency stop float at the Extractor	34
	1.4.5	Water pump control	35
	1.4.6	Maple sap meter	38
	1.4.7	Drain valve	39
	1.4.8	Air valve	39
	1.4.9	Internal temperature sensor	40
	1.4.10	External temperature sensor	41
	1.4.11	Tank Level Sensor	41
	1.4.12	Pressure sensor	42
1.5	M	obile	43
1.6	Ga	iteway	44
1.7	Re	peater	46
1.8	Co	nnectors, adapters, cables and antennas	48
2.	Equipn	nent Installation	51
2.1	Ra	dio communication principles applied to the DATACER™ system	53
	2.1.1	Radio wave	53
	2.1.2	Obstacles	54
	2.1.3	Interference	56
	2.1.4	Mesh network, paths and number of hops	56
2.2	DA	ATACER™ base	59

	2.2.1	DATACER' bases with DA numbers lower than 1200	59
	2.2.2	DATACER™ bases with DA numbers greater than or equal to 1200	64
	2.2.3	Assigning or changing the channel of a radio transmitter	65
2.3	Va	cuum transmitters (single, double and triple)	67
2.4	Ta	nk level, pressure, combined transmitters	73
	2.4.1	Tank level transmitters (L, LL, LLL)	74
	2.4.2	Pressure transmitters (P, PP, PPP)	79
	2.4.3	Combined transmitters (LV, LLV, PV, PPV, PLL, PLV)	85
2.5	DA	ATACER™ station	87
	2.5.1	Relay for vacuum pump start without drive	89
	2.5.2	DATACER™ connection for start/stop and speed variation of a vacuum pump wi	
	2.5.3	Vacuum modulation valve	95
	2.5.4	Extractor emergency stop float	97
	2.5.5	Water pump control	99
	2.5.6	Maple sap meter	. 102
	2.5.7	Drain valve	. 109
	2.5.8	Air valve	. 110
	2.5.9	Internal temperature sensor	. 111
	2.5.10	External temperature sensor	. 111
	2.5.11	Tank Level Sensor	. 114
	2.5.12	Pressure sensor	. 114
	2.5.13	Humidity Trap	. 115
2.6	Ga	iteway	. 115
2.7	Re	peaters	. 119
	2.7.1	Standard antenna repeater whip and alkaline batteries	. 119
	2.7.2	Repeater without antenna and connected to power	. 119
2.8	Ca	ble and antennas	. 119
3.	Interfa	ce settings	. 123
3.1	Vo	cabulary and data structure	. 125
3.2	DA	ATACER™ Interface	. 126
	3.2.1	Accessing the Admin Menu	. 126
	3.2.2	Selecting your language	. 127

	3.2.3	Add or change the password to connect to the Administrator menu	128
	3.2.4	Add or modify the username and password for remote connection	128
	3.2.5	Add or modify the site name	129
	3.2.6	Change units, vacuum/temperature color thresholds and synchronization speed	130
	3.2.7	Activating the mobile or desktop view on a mobile device	132
	3.2.8	Activate/deactivate the update feature	133
	3.2.9	Add, modify, or delete a pumping station	134
	3.2.10	Add, modify or delete a sector	135
	3.2.11	Add, modify or delete a Transmitter	136
	3.2.12	Address initialization of a Transmitter	138
	3.2.13	Activate vacuum level modulation at the Extractor via the Modulation Valve	140
	3.2.14	Renaming a line for a vacuum Transmitter	141
	3.2.15	Changing Color Thresholds for a Vacuum Level Sensor	143
	3.2.16	Assigning the vacuum level of an Extractor as the reference for a sector	143
	3.2.17	Correcting a vacuum level measurement Offset	146
	3.2.18	Setting up a Tank Level Sensor	146
	3.2.19	Configuration of a pressure sensor	150
	3.2.20	Add, modify, or delete the number of taps connected to a maple sap meter	152
	3.2.21	Import the settings from the base to the DATACER $^{\text{\tiny{TM}}}$ mobile	154
	3.2.22	Alarms and notifications	157
	3.2.23	Add or modify a web link	165
	3.2.24	Maps	166
	3.2.25	Save setting	170
	3.2.26	Data archiving	171
	3.2.27	Activate/deactivate connection to the Internet	172
	3.2.28	Recovering access to the account in case of forgotten identifiers	175
3.3	DA	ATACER™ station interface	177
	3.3.1	Adding or modifying the automatic start and stop temperatures of the vacuum pump	177
	3.3.2	Adding or modifying the vacuum levels to be reached at the Extractor for automa	
		modulation according to the outside temperature	178
	3.3.3	Activating/deactivating the automatic opening of the Drain Valve according to the outside temperature	

	3.3.4	pressure in the discharge pipe	
	3.3.5	Deactivating the water pump automatically if the Drain Valve is open	181
	3.3.6	Activate/deactivate the automatic opening temperatures of the air intake valve	182
	3.3.7	Line cleanup	183
	3.3.8	Last pumping of the day	184
	3.3.9	Selecting the type of pressure sensor	185
	3.3.10	Change the language and units	185
	3.3.11	Enable/disable automatic screen saving	186
3.4	Ga	teway	187
	3.4.1	Add, modify or delete a gateway on the interface	187
	3.4.2	Assign one or more sectors/pumping stations to a gateway on the interface	188
	3.4.3	Case of a gateway connected to a DATACER™ station via cable	189
4.	System	use	193
4.1	Sta	artup	196
	4.1.1	Starting up the DATACER™ base	196
	4.1.2	DATACER™ interface presentation	199
	4.1.3	Starting up the DATACER™ station	202
	4.1.4	DATACER™ station interface presentation	203
	4.1.5	Switching on vacuum transmitters and other radio transmitters	204
	4.1.6	Establish communication between the DATACER™ base and all radio transmitter	
	4.1.7	Switch on the gateway and successfully communicate with the DATACER $^{\mbox{\tiny TM}}$ base	207
	4.1.8	Establish radio communication with the transmitters	208
	4.1.9	Establish radio communication with a DATACER™ station	210
	4.1.10	Establish communication with a DATACER™ station connected to a gateway via cable	
4.2	Int	erpreting the colored LED indicators	210
	4.2.1	Old version of LED indicator for Vacuum Transmitters, L, LL, LLL, P, PP, PPP, Combined Transmitters and DATACER™ station	211
	4.2.2	New version of LED indicator light for Vacuum Transmitters	212
4.3	En	d of season shutdown	215
	4.3.1	Shutting down the DATACER™ base	216
	4.3.2	Shutting down the gateway and end-of-season storage	221

	4.3.3	Shutting down the DATACER™ station	221
	4.3.4	Stopping vacuum transmitters and other radio transmitters	221
4.4	Ac	ccessing the DATACER™ interface	222
	4.4.1	Locally directly on the computer of DATACER™ base	222
	4.4.2	Locally from another computer without internet	223
	4.4.3	Locally from a mobile device without internet	224
	4.4.4	Remotely from another computer	228
	4.4.5	Remotely from a mobile device	232
4.5	O۱	verview	233
4.6	Vi	ewing measurements	236
	4.6.1	Factors that influence the vacuum level value measured by the Sensor	237
	4.6.2	End of line vacuum level	238
	4.6.3	Vacuum level at the Extractor	240
	4.6.4	Tank Level	242
	4.6.5	Pressure of a water pump or after the prefilters of a concentrator	244
	4.6.6	Sap flow and volume	245
	4.6.7	External temperature at the line ends	248
	4.6.8	Interior and exterior temperature of a pump station	248
	4.6.9	View your data via the DATACER™ mobile	250
	4.6.10	View data and via the gateway	254
4.7	Co	ontrolling the equipment locally	254
	4.7.1	Starting/stopping a vacuum pump	255
	4.7.2	Starting a water pump	257
	4.7.3	Forcing the speed of a vacuum pump with a drive	258
	4.7.4	Forcing the Modulation Valve Open	259
4.8	Co	ontrolling equipment remotely	260
	4.8.1	Starting/stopping a vacuum pump	261
	4.8.2	Forcing the speed of a vacuum pump with a drive	262
	4.8.3	Forcing the Modulation Valve Open	263
	4.8.4	Starting/stopping a water pump	263
	4.8.5	Open/Close Drain Valve	265
	4.8.6	Equipment remote control via the gateway	265
4.9	Αι	utomate the control of your equipment	266

	4.9.1	Temperature-dependent start/stop of a vacuum pump	266
	4.9.2	Stop/restart the vacuum pump via the Float in the Humidity Trap (safety for the vacuum pump)	
	4.9.3	Modulation of the vacuum level at the Extractor according to the temperature	268
	4.9.4	Modulation of the vacuum level at the Extractor according to a set vacuum value	
			270
	4.9.5	Close the modulation valve if the water level in the Extractor exceeds a certain le (safety for the vacuum pump)	
	4.9.6	Start/stop a water pump according to a pond level by Electrodes	274
	4.9.7	Open/close a Drain Valve depending on the outside temperature and/or the pressure of a pipe	275
	4.9.8	Stop the water pump if the drain valve is open	276
	4.9.9	Opening/closing the air intake valve depending on the outside temperature (safe for the vacuum pump)	•
	4.9.10	Line cleanup	277
	4.9.11	Last pumping of the day	277
4.10) M	laps	277
4.11	. Al	arms and notifications	280
	4.11.1	Viewing active alarms on the DATACER™ interface	280
	4.11.2	Viewing notifications received by SMS or email	283
4.12	. G	raphs	284
	4.12.1	Vacuum level and temperature 24 / 7	284
	4.12.2	Tank level 24 / 7	285
	4.12.3	Historical graph of vacuum level and temperature per day for a season	286
4.13	U	pdating the DATACER™ database software	289
5.	Proble	ms and solutions	291
5.1	W	arning: No data for some or all of the components of these Transmitters	292
5.2	D	ata refresh time fluctuates randomly for Transmitters	292
5.3	D	ata refresh time fluctuates randomly for a group of Transmitters	293
5.4	D	ata refresh time increases for all Transmitters connected to a DATACER $^{\mathtt{m}}$ base	294
5.5	Ta	ank level readings with an Ultrasonic Sensor are not consistent	294
5.6 vacı		acuum level reading = 0 inHg at line end and the exterior temperature read by the nsmitter = -50° C	
5.7	In	consistent tank level readings with pressure sensor	295
5.8	In	automatic mode, vacuum pump starts/stops too often	296

5.9		I can't lower my vacuum differential in a line	296
5.10 pum		Impossible to modulate my vacuum level only by varying the speed of my vacuum 296	
5.11		Modulating valve position does not change	297
5.12		Return pump does not start when water touches flow electrode	297
5.13		Water pump does not start following a remote manual start request	298
5.14		Unable to connect remotely to the DATACER $^{\mbox{\tiny TM}}$ interface via datacer.online	299
5.15		Volume count appears inconsistent	300
6.	Арр	endices	302
6.1		Equipment specifications	303
6.2		Reminders of the steps for seasonal opening and closing of the DATACER $^{\mbox{\tiny TM}}$ system.	304
6.3		Grounding an antenna	309
6.4		Summary of settings and use of control and automation functions	311
6.5		Meaning of the lights on the DATACER™ station	312
6.6		Industry Canada Regulatory Compliance Notice	313
6.7		Federal Communications Commission (FCC) Statement	313
6.8		Order of priority for opening the drain valve and starting the water pump	313
6.9		Compressed air injection	314
	6.9.2	1 Choosing a compressor	314
	6.9.2	2 Installing the compressor and air valve at the pumping station	314

List of figures

Figure 1 : Components of the DATACER™ base	. 19
Figure 2 : Interior view of a DATACER™ base	. 20
Figure 3 : Single vacuum transmitter	. 22
Figure 4: Solar vacuum transmitter	. 24
Figure 5 : Sonar tank level transmitter (L)	. 25
Figure 6 : Pressure transmitter (P)	. 26
Figure 7 : DATACER™ station	. 29
Figure 8: Identify the physical version of the DATACER station	. 31
Figure 9 : Vacuum pump start relay without drive	. 31
Figure 10: Connection for start/stop and speed variation of a vacuum pump with drive	
Figure 11 : Vacuum modulation valve	
Figure 12 : Emergency stop float at the horizontal extractor	. 34
Figure 13 : Emergency stop float at the vertical extractor	. 35
Figure 14 : Water pump control	
Figure 15 : Water pump control electrodes	. 37
Figure 16: DATACER maple sap meter side view	. 38
Figure 17 : Drain valve	
Figure 18 : Air intake valve	. 40
Figure 19 : Internal temperature sensor	
Figure 20 : External temperature sensor	
Figure 21 : DATACER™ station sonar sensor	
Figure 22 : DATACER™ station pressure sensor	
Figure 23: Components of a DATACER gateway	. 45
Figure 24: Components of a DATACER gateway	
Figure 25 : Battery powered repeater with omnidirectional whip antenna	
Figure 26: Battery powered repeater without antenna N connector female socket	
Figure 27 : Connected repeaters without antenna N connector female socket	
Figure 28 : N Connector male plug socket	
Figure 29 : N Connector female socket	
Figure 30 : Cable N connexion male plug socket – N male	
Figure 31 : Cable N connexion female socket - N female	
Figure 32 : N Connector male plug socket – N male	
Figure 33: White omnidirectional antenna and its mounting bracket	
Figure 34 : Omnidirectional whip antenna and its N connector female socket	
Figure 35 : Directional antenna N connector female socket	. 50
Figure 36: Shape of a radio wave between 2 antennas in line of sight in longitudinal section	
(Fresnel zone)	. 53
Figure 37 : Table of theoretical orders of magnitude of the required obstacle-free heights (h)	
according to the distance (d) between the antennas	
Figure 38 : Signal quality between 2 antennas depending on obstacles	
Figure 39: Mesh network with several paths or routes for each transmitter to the base	
Figure 40: Network with a bottleneck or overload that can limit data communication	. 57

Figure 41 : Comparison of the number of hops for different tra	insmitters in a network	58
Figure 42 : Connected DATACER™ base		
Figure 43 : Connecting the DATACER $ m ^{ imes}$ base to the UPS battery	·	64
Figure 44 : Finding your DATACER™ base channel number. Insi	de view of the DATACER™ base	
cover		66
Figure 45: Jumper position on pins correspondence and trans	mitter channel number	67
Figure 46 : Sheet metal screws on wooden stake for installatio	n of a vacuum transmitter	68
Figure 47: Vacuum transmitter not properly installed		69
Figure 48: Vacuum transmitter properly installed		69
Figure 49: Vacuum transmitters installed in lower areas		70
Figure 50 : Vacuum transmitters installed on high points		70
Figure 51: Slope not adhered to with for one of the 5/16" pipe	s connected to the transmitter.	71
Figure 52: Slope adhered to for all 5/16" pipes connected to the	ne transmitter	71
Figure 53: Steady pipe slope 5/16" (7.94 mm) adhered to.	Figure 54: Steady pipe slope	
5/16" (7.94 mm) and minimum height not adhered to	72	
Figure 55 : Bevel cut 5/16" (7.94 mm) pipe for easy installation	and removal from the	
transmitter vacuum port		73
Figure 56: To know which sensor can be plugged in for a tank	evel, pressure or combined	
transmitter		
Figure 57 : Tank level sonar sensor installed		75
Figure 58 : Ultrasonic sensor installation outline to measure a	tank level	76
Figure 59: Ultrasonic tank level sensor not properly installed		77
Figure 60 : Sonar sensor connection for a single tank level tran	smitter (L)	78
Figure 61: Interior view of a single tank level sonar (L)		78
Figure 62 : Sonar sensor connection for a double tank level tra	nsmitter (LL)	79
Figure 63: Sonar sensor connection for a triple tank level tran	smitter (LLL)	79
Figure 64 : Screw-in pressure sensor installed		
Figure 65: Submersible sensor installed		81
Figure 66: Pressure sensor connection for a single pressure Tr	ansmitter (P) - Version 5	82
Figure 67 : Internal view of a single pressure transmitter (P) - v	ersion 5	83
Figure 68 : Connection of pressure sensors for a double pressu	re transmitter (PP) - version 5	83
Figure 69 : Connection of pressure sensors for a triple pressure	e transmitter (PPP) - version 5	84
Figure 70 : Connection of pressure sensors for a single pressur	e transmitter (P) - version 6	84
Figure 71 : Connection of pressure sensors for a double pressu	ire transmitter (PP) - version 6	85
Figure 72 : Connection of pressure sensors for a triple pressure	e transmitter (PPP) - version 6	85
Figure 73 : Pressure sensor connection for a PV combined trar	smitter - version 6	86
Figure 74 : Pressure and sonar sensors connection for a PLV co	ombined transmitter - version 6	86
Figure 75 : Connecting the 5/16" (7.94 mm) pipe to the extrac	tor	87
Figure 76 : DATACER™ station connection of a device with a co	onnector	88
Figure 77 : Vacuum pump start relay connection to the DATAC	ER™ station	89
Figure 78: Interior view of a vacuum pump magnetic starter re	lay box	90
Figure 79 : Yaskawa V1000 drive connection to the DATACER™		
Figure 80 : Main drives connection to the DATACER™		91
Figure 81: Jumper and DIP switch positions on the main drives		92

Figure 82 : Connection of a Yaskawa V1000 drive	93			
Figure 83: DIP switch position on MV040 Bush pump.	93			
Figure 84: Jumper positions to be retained for TD350 Techtop drives				
Figure 85: Jumper position to be kept for TD20 (Techtop) drives				
Figure 86 : Vacuum modulation valve installed				
Figure 87 : Modulation valve connection to the DATACER™ station				
Figure 88 : Horizontal extractor emergency float installed – extractor outside view				
Figure 89 : Horizontal extractor emergency float installed – extractor inside view				
Figure 90 : Extractor emergency stop float connection to the DATACER™ station				
Figure 91 : Water pump control electrodes installed in a tank				
Figure 92 : Electrodes connection in the water pump control				
Figure 93 : Lovato relay default settings				
Figure 94 : Water pump control connection to the DATACER™ station				
Figure 95: Maple sap meter positioning				
Figure 96: Lengths and diameters of sections upstream and downstream of the maple sap n				
Figure 97: Installation of a maple sap meter in a pumping station on the return pipe of a tar				
the absence of drainage	105			
Figure 98: Installation of a maple sap meter in a pumping station on the return pipe of an				
internal pump extractor				
Figure 99: Maple sap meter connection diagram to DATACER station version 1.7 (blue or wl				
card)				
Figure 100: Maple sap meter connection diagram to DATACER station version 1.8 (red or bla				
card)				
Figure 101 : Drain valve installation diagram				
Figure 102 : Drain valve connection to the DATACER™ station				
Figure 103: Air valve installed				
Figure 104 : Air valve connection to the DATACER™ station				
Figure 105 : Internal temperature sensor connection to the DATACER™ station				
Figure 106: Exterior temperature sensor incorrectly installed.				
Figure 107 : External temperature sensor installed				
Figure 108 : External temperature sensor connection to the DATACER™ station				
Figure 109 : Sonar tank level sensor connection to the DATACER™ station				
Figure 110 : Pressure sensor connection to the DATACER™ station				
Figure 111 : Humidity trap connection to the DATACER™ station				
Figure 112: The base station radio network (channel 1) is not separated from the gateway r				
network (channel 2), so there is a risk of interference.				
Figure 113: The radio networks are geographically separated, limiting the risk of interference				
Figure 114: Gateway side Figure 115: DATACER™ station side (version 1.7 and 1.8 - blue,	,			
white, and red board) 117	4			
Figure 116: DATACER™ station side (version 1.8 - black board)				
Figure 117: Functional local area network (LAN)				
Figure 118: Customer internet network in operation	110			

Figure 119 : Installation diagram of an antenna outside a building	120
Figure 120 : Antenna on a building improperly installed	121
Figure 121 : Antenna on a building properly installed	121
Figure 122 : Antenna Coax-seal option B or C	122
Figure 123 : Antenna Coax-seal option A	122
Figure 124 : Transmitter Coax-seal	122
Figure 125 : Data architecture in the DATACER™ system	125
Figure 126 : Transmitter address	138
Figure 127: Visualize the DATACER station channel number	186
Figure 128 : DATACER™ base radio LED indicator lights	198
Figure 129 : DATACER™ station radio LED indicator lights	202
Figure 130 : Transmitter radio LED indicator lights	205
Figure 131: Significance of the vacuum level measurements on the interface (VAC1, VAC 2	and
VAC 3) in relation to the position of the vacuum ports on a transmitter	239
Figure 132: Example of notification sent by SMS if an alarm is triggered	283
Figure 133: Example of notification sent by email if an alarm is triggered	283
Figure 134: Installation of an angled bend inside the extractor to divert the maple sap flow	in
order to reduce air bubbles near the pump suction	301
Figure 135: Move the maple sap inlet to prevent bubble formation at the pump suction	301
Figure 136: Installation of a maple sap meter in a pumping station on the discharge line of a	3
basin in the presence of drainage	315

1. Equipment description

Understand the role and specifications of the DATACER™ equipment. You will find a detailed description of each of the transmitters along with their sensors and respective peripherals.

Below is a list of topics that are covered in this section.

1.1	Principle			
1.2	DATACER™ base			
1.3	3 Transmitters			
	1.3.1	Vacuum (V)	. 21	
	1.3.2	Sonar Tank Level (L)	. 25	
	1.3.3	Pressure (P)	. 26	
	1.3.4	Combined (V, L, P)	. 27	
1.4	DA	ATACER™ station	. 28	
	1.4.1	Vacuum pump start relay without drive	. 31	
	1.4.2	Connection for start/stop and speed variation of a vacuum pump with drive	. 32	
	1.4.3	Vacuum modulation valve	. 32	
	1.4.4	Emergency stop float at the Extractor	. 34	
	1.4.5	Water pump control	. 35	
	1.4.6	Maple sap meter	. 38	
	1.4.7	Drain valve	. 39	
	1.4.8	Air valve	. 39	
	1.4.9	Internal temperature sensor	. 40	
	1.4.10	External temperature sensor	. 41	
	1.4.11	Tank Level Sensor	. 41	
	1.4.12	Pressure sensor	. 42	
1.5	M	obile	. 43	
1.6	Ga	iteway	. 44	
1.7	Repeater			
1.8	Сс	onnectors, adapters, cables and antennas	. 48	

1.1 Principle

The DATACER™ system is a network of radio transmitters distributed throughout your sugar bush.

Each transmitter has a specific role. For example, measuring parameters, controlling and automating certain equipment, receiving alerts and analyzing your data.

All transmitters have a radio and an antenna to exchange information. The measurement of the different parameters is done thanks to sensors connected to the transmitters. Controls and automation are performed directly by the DATACER™ station or via its peripheral tools.

For technical specifications of DATACER™ transmitters, Sensors and DATACER™ Station peripherals see section 6.1 page 303.

1.2 DATACER™ base

The DATACER™ base is the main computer and radio master coordinator of the DATACER™ system.

Through the DATACER™ base interface, you will be able to consult your data from your various transmitters, set up your system according to your needs, remotely control your pumping station equipment, receive alerts and view historical data charts.

For installation instructions see section 2.2 page 59.

Figure 1 : Components of the DATACER $^{\text{\tiny{IM}}}$ base

- Keyboard, monitor and mouse (USB emitter is located in the battery compartment of the mouse).
- Connection cable between screen and base.
- Screen power cord.
- DATACER™ base.
- DATACER™ router (routers are no longer present for DATACER™ bases with a DA number ≥ 1200).
- 6 Ethernet cable to connect your Internet system to the DATACER™ Router.
- Ethernet cable to connect the DATACER™ Router to the DATACER™ base.
- Backup and overload protection battery (UPS).

Figure 2 : Interior view of a DATACER™ base

- Alkaline D batteries that power the base transmitter in case of power failure.
- Base computer named NUC.
- USB key for data storage.

It is possible to access the DATACER™ base interface remotely from any Internet-connected device such as your cell phone, tablet or computer. This access is only possible if the DATACER™ base is connected to the Internet.

To do this, you need to get an Internet connection via an Ethernet cable to be connected directly into the DATACER™ Router. The DATACER™ base needs a minimum Internet speed of 1mbit/s (10 mbits/s for annual update) and 10GB of data/month.

Data consumption may vary depending on the number of transmitters in your network and the number of instantaneous remote connections to the DATACER™ interface.

Several Internet solutions are available on the market:

Residential Internet access.

Do not opt for a 900Mhz internet solution, as there is a risk of interference on the DATACER™ frequency band (902-928 MHz).

• Mobile Internet access point via an Internet or cellular provider.

The DATACER™ base can function without Internet if you do not need to consult your data remotely.

To reduce your data consumption when browsing the DATACER™ interface near the base, please set up your personal devices such as your cell phone, tablet or computer to connect directly to the base without going through the Internet (see section 4.4.2 page 223 et la section 4.4.3 page 224).

If your DATACER™ base is connected to the Internet, you can benefit from faster personalized support during the season.

1.3 Transmitters

The category we have called "Transmitters" contains all the radio transmitters that allow the measurement parameters via specific sensors.

The transmitters all have a similar structure including a radio, a standard whip antenna or antenna connector and a wired or battery power supply.

Below you will find the details of each with their respective Sensors.

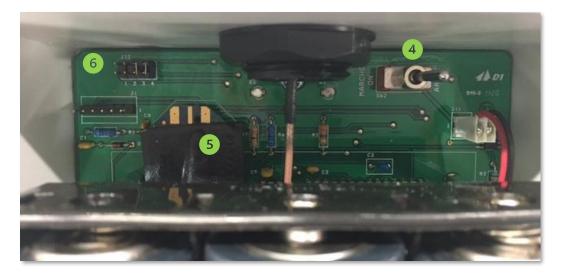
1.3.1 Vacuum (V)

Vacuum Transmitters allow the measurement of the vacuum level at the end of the line or at the Extractor.

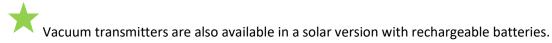
There are single, double and triple vacuum transmitters.

Each vacuum transmitter is also capable of measuring temperature.

The choice and number of single, double and triple transmitters is determined by the number, location and spacing of your line ends.


For installation instructions see section 2.3 page 67.


1.3.1.1 Vacuum with alkaline batteries


Figure 3 : Single vacuum transmitter

- 1 Hose connection 5/16 in. (7.94 mm).
- Whip antenna.
- Alkaline D batteries (3).
- On/off switch.
- Badio.
- Jumpers for changing channels.
- Vacuum level sensor.
- 8 Filter.

1.3.1.2 Vacuum with rechargeable batteries

Figure 4: Solar vacuum transmitter

- 1 Solar panel
- 2 10 000 mAh NiMH rechargeable batteries
- Please handle your transmitters with care to avoid damaging the solar panels.

Transmitters require D NiMH rechargeable batteries of at least 10 000 mAh. The batteries supplied with your transmitters have been duly qualified to meet the requirements of the DATACER system.

Do not combine multiple types of batteries in the same transmitter. For a solar transmitter, use only 3 rechargeable batteries with the solar panel connected to the card.

1.3.2 Sonar Tank Level (L)

Sonar tank level transmitters are used to measure the level of sap, concentrate or filtrate contained in an open-topped tank.

There are single, double and triple sonar tank level transmitters.

The measurement of the tank level is done with the sonar sensor which works by sending and listening to the reflection of an ultrasound on the water surface. As a result, the sonar sensor is positioned above the tank.

For installation instructions see section 2.4.1 page 74.

Figure 5 : Sonar tank level transmitter (L)

Tank level transmitter.

- 2 Sonar sensor.
- Mounting bracket.

1.3.3 Pressure (P)

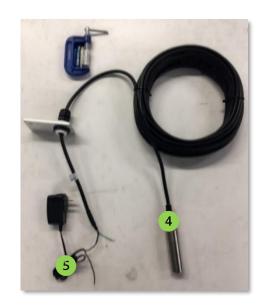
Pressure transmitters have two main functions in the system.

They can measure either water pump pressure or concentrator prefilters outlet pressure.

They also allow the measurement of water tank levels thanks to the pressure of the water column exerted on the sensor.

There are single, double and triple pressure transmitters. Depending on the required function, different sensors are available.

For installation instructions see section 2.4.2 page 79.



- 1 Pressure transmitter.
- Pressure sensor to measure pump pressures (0-150 psi, 0-300 psi) and tank levels (0-34ft) (0-10.36m). Connection to piping is ¼ in. MPT.
- \bigcirc Pressure sensor to measure tank levels (0-100 in) (0-2.54 m). Connection to piping is % in. MPT.
- 4 Submersible pressure sensor for measuring tank levels (0-10 ft) (0-3.05 m).
- Wires that connect to the transmitter board.

1.3.4 Combined (V, L, P)

Combined transmitters are capable of measuring a combination of parameters. Several models are available:

LV, LLV, PV, PPV, PLL, PLV

- V: Vacuum level
- L: Tank level by sonar
- P: Pressure

For installation instructions see section 2.4.3 page 85.

1.4 DATACER™ station

DATACER™ station is the transmitter that allows you to control various equipment present in your pumping stations such as vacuum pumps, water pumps, vacuum modulation valves, drain valves and air valves.

When users want to control a remote device, the DATACER™ station receives commands from the base and transform them directly into actions on the pumping station equipment or device in question.

Furthermore, users can also set up the DATACER™ station to automate the pumping station equipment operation according to various parameters such as outdoor temperature, vacuum levels, pressure and others. The DATACER™ station is able to perform its automatic functions autonomously without a DATACER™ base.

Finally, the station can also measure different parameters such as:

- One vacuum level at the extractor.
- One tank level by sonar.
- One pressure.
- The inside and outside pumping station temperature.
- The volume of sap collected after an electric extractor or after a tank.

The list of peripherals and sensors of the DATACER™ station are presented in the following pages.

You will find in the appendix each LED indicators meaning on the DATACER™ station (see section 6.5 page 312).

For installation instructions see section 2.5 page 87.

Figure 7 : $DATACER^{TM}$ station

- DATACER™ station.
- Hose connection 5/16 in. (7.94 mm).
- Automatic-Off-Manual Switch: AUTO-OFF-MAN.
- 4 Grommet.
- 5 Touch screen.
- 6 Sensor and peripheral connections.
- ON/OFF switch.
- 3 Jumper for changing channels.
- 9 Radio, channel and power LED indicators.
- 10 Radio.

Figure 8: Identify the physical version of the DATACER station

1.4.1 Vacuum pump start relay without drive

The relay allows the station to start/stop a vacuum pump without a drive by a remote magnetic contactor or automatically depending on the outside temperature of the pumping station.

For installation instructions see section 2.5.1 page 89.

Figure 9 : Vacuum pump start relay without drive

- 1 Magnetic relay box.
- Connector that plugs into the DATACER™ station.
- Wires to be connected to the vacuum pump contactor.

The connection of the relay box to the vacuum pump contactor must be done by a qualified electrician. The work must be carried out in accordance with the local regulations in force.

1.4.2 Connection for start/stop and speed variation of a vacuum pump with drive

This connection allows the station to start/stop the vacuum pump remotely or automatically depending on the outdoor temperature of the pumping station.

You can also force the speed of the pump remotely or let it vary automatically according to the outside temperature or the set vacuum values you have determined.

This device is included with any purchase of a DATACER™ station.

If you want to modulate your vacuum level efficiently, also use a Modulation Valve (See section 1.4.3 page 32).

For installation instructions see section 2.5.2 page 90.

Figure 10: Connection for start/stop and speed variation of a vacuum pump with drive

- 1 Connector that plugs into the DATACER™ station.
- Wires to connect to the drive.

1.4.3 Vacuum modulation valve

The vacuum modulation valve allows the station to modulate the vacuum level at the extractor.

The valve is positioned between the pump and the extractor.

The regulation of the vacuum level at the extractor is achieved by the partial to total closing of the valve, which creates a restriction at the inlet of the vacuum pump and limits the air flow that can pass to the pump. This pressure drop is modulated by the position of the valve, which will adjust according to the given set point.

You can force the opening of the remote valve or let it vary automatically depending on the outside temperature or on the set vacuum values you have determined.

If you have a pump with a drive, this valve works in parallel with the pump speed variation and allows a more efficient modulation.

To take advantage of the automatic closing of this valve if the extractor overflows, please also order an emergency stop float (see section 1.4.4 page 34).

For installation instructions see section 2.5.3 page 95.

Figure 11 : Vacuum modulation valve

- Belimo Modulating valve 2 in. (5.08 cm).
- 2 Connector that plugs into the DATACER™ station.
- Opening direction selector switch 0-1.

1.4.4 Emergency stop float at the Extractor

The emergency stop float allows the station to automatically close the vacuum modulation valve when the sap level reaches a certain threshold in the Extractor.

Two models are available:

- Float for horizontal extractors.
- Float for vertical extractors.

For installation instructions see section 2.5.4 page 97.

Figure 12 : Emergency stop float at the horizontal extractor

- Float located inside the extractor.
- Clamping ring to adjust the height of the float in the extractor.
- 3 Connector that plugs into the DATACER™ station.
- 4 1 in. MPT threaded connection that screws onto the extractor.

Figure 13 : Emergency stop float at the vertical extractor

- Connector that plugs into the DATACER™ station.
- 2 ½ in. MPT threaded connection that screws onto the Extractor.

1.4.5 Water pump control

The water pump control allows to start/stop a transfer pump.

It comes with a set of 3 electrodes that are installed in the pump supply tank. One electrode is used for start, the second for stop and the third is used as a contact reference. With this pump control, you can control your pump remotely or automatically based on the levels of the electrodes.

The pump control must be chosen according to the pump power (2, 3 or 5 Hp) and the height of the tank (60 or 96 in.) (1.52 to 2.44 m).

For installation instructions see section 2.5.5 page 99.

Figure 14 : Water pump control

- Water pump control switch (AUTO-0-JOG).
- 2 Connector that plugs into the DATACER™ station.

The connection of the water pump control to the electric current must be done by a qualified electrician. The work must be carried out in accordance with the local regulations in force.

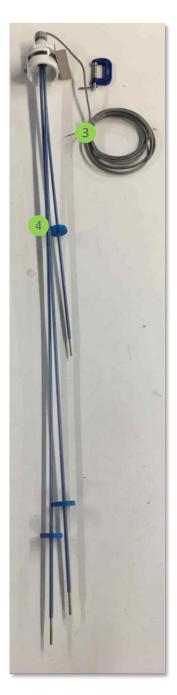


Figure 15 : Water pump control electrodes

- Wires that connect to the water pump control.
- Washer to prevent one electrode from coming into contact with another electrode or tank wall.

1.4.6 Maple sap meter

The DATACER maple sap meter measures the volume of maple sap at the outlet of a tank or extractor return pump.

In addition to the volume accumulated on the meter itself, the DATACER system generates average flow rates per hour, volume harvested per day, volume harvested per day per tap, and volume harvested since the start of the season.

Interpreting these performance indicators will enable you to better manage the flow of maple sap during the harvest season and make better decisions for your future investments.

For installation instructions, consult section 2.5.6, page 102.

Figure 16: DATACER maple sap meter side view

Features:

Model	Min. Flow	Optimal Flow		Max. Flow	Dimensions (cm)
	(USG/min.)	(USG/min.)		(USG/min.)	Length (L) x Width (W) x
	D1	D2	D3	D4	Height (H)
1 ½ in.	0.7	1.1	70	88	40.5 x 12 x 16.5
2 in.	1.1	1.8	110	136	45 x 12 x 16.5
Margin of	Below D2	Between D2 and D3 =		Above D3	
error	= 5%	2%		= 5%	

Flow rates in excess of the maximum may damage the maple sap meter.

Max. pressure: 232 PSI

Stainless steel meter 304

MPT mesh

1.4.7 Drain valve

The drain valve allows the station to drain a sap pipe. This operation can be done either remotely or automatically depending on the outside temperature and/or the pressure of the pipe.

For installation instructions see section 2.5.7 page 109.

Figure 17 : Drain valve

- Onnector that plugs into the DATACER™ station.
- 2 1 in. FPT threaded connection that screws into the pipe.

1.4.8 Air valve

The Air Intake Valve allows the station to draw air into a vacuum pump to cool it down if the pump model in question is in danger of heating up and deteriorating at high vacuum. The valve opens and closes depending on the outside temperature.

For installation instructions see section 2.5.8 page 110.

Figure 18 : Air intake valve

- Connector that plugs into the DATACER™ station.
- 1 in. FPT threaded connection that screws into the pipe.

1.4.9 Internal temperature sensor.

This sensor measures the temperature inside the pumping station.

This device is included with the purchase of a DATACER™ station.

For installation instructions see section 2.5.9 page 111.

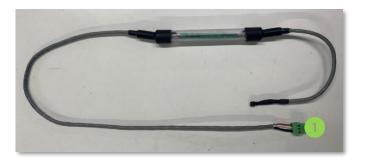


Figure 19 : Internal temperature sensor

Connector that plugs into the DATACER™ station.

1.4.10 External temperature sensor

This sensor measures the outside temperature of the pumping station.

This device is included with the purchase of a DATACER™.

For installation instructions see section 2.5.10 page 111.

Figure 20 : External temperature sensor

Connector that plugs into the DATACER™ station.

1.4.11 Tank Level Sensor

Allows you to measure the level of liquid in an open-top tank. This sensor is also found on the tank level transmitters L (see section 1.3.2 page 25).

For installation instructions see section 2.5.11 page 114.

Figure 21 : DATACER™ station sonar sensor

- Connector that plugs into the DATACER™ station.
- 2 Sonar sensor.
- Mounting bracket.

1.4.12 Pressure sensor

The pressure sensor has two main functions:

- It can measure a water pump pressure or the concentrator prefilters outlet pressure or the concentrator high pressure.
- It also allows the measurement of water tank levels thanks to the pressure of the water column exerted on the sensor.

This sensor is also found on pressure transmitters P. See section 1.3.3 page 26 for more information on the types of sensors available.

For installation instructions see section 2.5.12 page 114.

Figure 22 : DATACER™ station pressure sensor

- Connector that plugs into the DATACER™ station.
- 2 1/4 in. MPT threaded connection that screws into the pipe.

1.5 Mobile

The DATACER mobile is a wireless device that allows you to query the transmitter network via radio waves and communicate system data directly to your cell phone. It therefore gives you access to the system if the DATACER base is not connected to the internet or if the cellular network is not available in the forest.

- 1 SSID
- On-off switch
- Indicator lights: "Network," indicating the synchronization status of the mobile with the mesh network; "Request," indicating the sending of a request; "Response," indicating the reception of data; and "Charge," indicating the current charge of the mobile.
- 4 USB-C charging port

1.6 Gateway

Depending on the option chosen, the gateway can meet different needs.

Option 1: Gateway with radio option:

- Add transmitters to a site far from the DATACER base.
- Add transmitters to a DATACER base that has reached its limit of 75 transmitters.

- Improve system responsiveness by creating sub-networks.
- View all transmitters at remote sites and pumping stations via a single DATACER interface.

Option 2: Gateway with connection option for DATACER station:

- Improve pumping station equipment control speed.
- Control pumping station equipment without using the radio network.

Option 3: Gateway with radio option and connection for DATACER station:

All of the above.

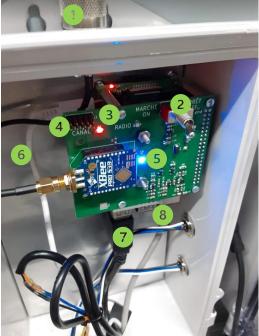


Figure 23: Components of a DATACER gateway

Figure 24: Components of a DATACER gateway

- 1 Antenna connection for gateways with radio option.
- On/Off switch.
- Channel and radio indicator lights.
- Channel jumper position(s).
- Indicator light to show that the gateway is powered.
- 6 Power supply cable.
- USB connection to connect to a DATACER station. Maximum 2 connections per gateway. If the cable is programmed as port 2, a label on the cable will identify it.
- 8 Network connection (RJ45 cable).
- Gateway identifier RPIXXXX.

Expected data consumption (if gateway connected to Internet): 6 GB/month. The data consumption could be higher if the internet connection is weak.

Please refer to section 1.2 page 18 for our full recommendations on choosing an Internet provider. The gateway must connect to your Internet system via an Ethernet cable.

1.7 Repeater

Repeaters are radio transmitters dedicated only to the radio signal transmission. They are used punctually to optimize the DATACER™ system radio communication quality. They allow to bypass a topographic obstacle or to diversify the communication path for a transmitter. For more information on the principles of radio communication see section 2 page 53.

Different types of repeaters are available:

- Standard repeaters with whip antenna and alkaline batteries (see Figure 25).
- Repeaters without antenna and alkaline batteries (see Figure 26)
- Repeaters without antenna connected to 120 V (see Figure 27).

Antenna-less repeaters allow several antenna combinations to fit the needs of each sugar bush.

Figure 25 : Battery powered repeater with omnidirectional whip antenna

Figure 26 : Battery powered repeater without antenna N connector female socket

Figure 27 : Connected repeaters without antenna N connector female socket

Repeaters are also available in a solar version with rechargeable batteries. Please see section 1.3.1.2, page 23 for our full recommendations on which batteries to use.

1.8 Connectors, adapters, cables and antennas

The antennas allow to amplify the radio wave transmission and reception signal.

With the DATACER™ system, it is possible to change the type of antenna for transmitters equipped with an N connector. If the transmitter does not have an N connector then it is equipped with the omni-directional whip antenna, this is the case for vacuum transmitters (see Figure 3 page 22).

For more information on the principles of radio communication and the antenna ranges see section 2 page 53.

For installation instructions see section 2.8 page 119.

Figure 29 : N Connector female socket

All radio transmitters must be operated with an antenna to avoid damage.

A cable is used in cases where it is necessary to raise the antenna above the transmitter. For example, when a transmitter is installed in a building and needs to communicate with others outside.

Different lengths of cable are available according to various needs.

It is recommended that the total cable length for a radio transmitter does not exceed 50 ft (15.24 m). Beyond this length, the transmission and reception signal strength is reduced.

Figure 30 : Cable N connexion male plug socket – N male

Figure 31 : Cable N connexion female socket - N female

Figure 32 : N Connector male plug socket – N male

2 types of antennas are available:

- Omnidirectional antennas.
- Directional antennas.

An omnidirectional antenna allows the transmitter to communicate 360 degrees, while a directional antenna allows signals to be transmitted and received in one direction only.

Directional antennas concentrate their signal in one direction only, which results in a better range. In addition, it should be noted that the effective range of an antenna is dependent on the obstacles encountered and the topography of the terrain.

Figure 33 : White omnidirectional antenna and its mounting bracket

Figure 34 : Omnidirectional whip antenna and its N connector female socket $\,$

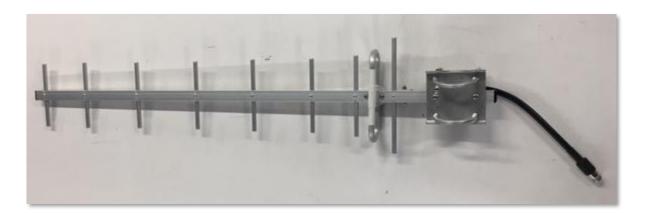


Figure 35 : Directional antenna N connector female socket

2. Equipment Installation

Overview of the radio communication principles applied to the DATACER™ system to optimize system responsiveness. You will find all the essential information to correctly install each of your different transmitters, sensors and peripherals.

Below is a list of the topics that are covered in this section.

2.1	Ra	dio communication principles applied to the DATACER™ system	53
	2.1.1	Radio wave	53
	2.1.2	Obstacles	54
	2.1.3	Interference	56
	2.1.4	Mesh network, paths and number of hops	56
2.2	DA	ATACER™ base	59
	2.2.1	DATACER™ bases with DA numbers lower than 1200	59
	2.2.2	DATACER™ bases with DA numbers greater than or equal to 1200	64
	2.2.3	Assigning or changing the channel of a radio transmitter	65
2.3	Va	cuum transmitters (single, double and triple)	67
2.4	Ta	nk level, pressure, combined transmitters	73
	2.4.1	Tank level transmitters (L, LL, LLL)	74
	2.4.2	Pressure transmitters (P, PP, PPP)	79
	2.4.3	Combined transmitters (LV, LLV, PV, PPV, PLL, PLV)	85
2.5	DA	ATACER™ station	87
	2.5.1	Relay for vacuum pump start without drive	89
	2.5.2	DATACER™ connection for start/stop and speed variation of a vacuum pump w drive	
	2.5.3	Vacuum modulation valve	95
	2.5.4	Extractor emergency stop float	97
	2.5.5	Water pump control	99
	2.5.6	Maple sap meter	. 102
	2.5.7	Drain valve	. 109
	2.5.8	Air valve	. 110
	2.5.9	Internal temperature sensor	. 111
	2.5.10	External temperature sensor	. 111
	2.5.11	Tank Level Sensor	114
	2.5.12	Pressure sensor	114

	2.5.13	Humidity Trap	115
2.6	G	ateway	115
2.7	Repeaters		119
	2.7.1	Standard antenna repeater whip and alkaline batteries	119
	2.7.2	Repeater without antenna and connected to power	119
2.8	C	able and antennas	119

2.1 Radio communication principles applied to the DATACER™ system

Transmitters use radio waves to communicate information between them to the DATACER™ base. The base is the radio coordinator of the network.

Understanding the principles of radio communication will optimize your system's installation and therefore its responsiveness. Data refresh times and remote command execution times are shorter for well installed systems.

In this section you will find the different parameters that can influence radio communication.

Don't hesitate to ask your LAPIERRE consultant to help you analyze your land and plan for the right equipment.

2.1.1 Radio wave

Waves are transmitted and received by the transmitter antennas.

The theoretical shape of a radio wave in longitudinal section looks like an American football (called Fresnel zone). To propagate optimally, a radio wave must be able to spread completely without intercepting obstacles between point A and B (voir Figure 36). It is said that the antennas must be line-of-sight.

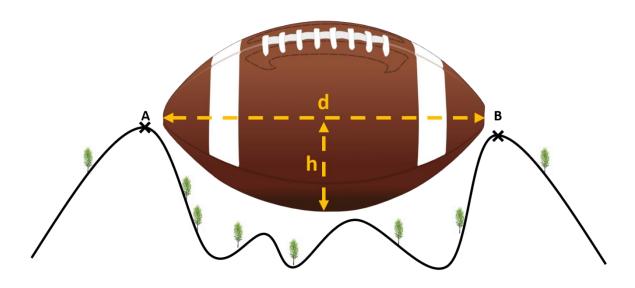


Figure 36 : Shape of a radio wave between 2 antennas in line of sight in longitudinal section (Fresnel zone)

The greater the distance (d) between an antenna (A) and an antenna (B), the greater the height (h) without obstacles must be to obtain a quality radio signal between the 2 transmitter antennas.

You will find in the following table the theoretical orders of magnitude of the necessary heights according to the distances to be covered for the DATACER™ waves.

Line-of-sight distance (d)	Theoretical height required without any
	obstacles (h)
15 km	35.55 m
5 km	20.4 m
2 km	12.9 m
1 km	9.12 m
0.5 km	6.45 m
0.1 km	2.89 m

Figure 37: Table of theoretical orders of magnitude of the required obstacle-free heights (h) according to the distance (d) between the antennas

2.1.2 Obstacles

In maple bush conditions, the main obstacles encountered are hills, plateaus, mountains, woodland density and buildings. The presence of leaves on the trees attenuates the radio signal. A dense softwood forest can greatly reduce and even prevent radio communication.

Terrain profiles:

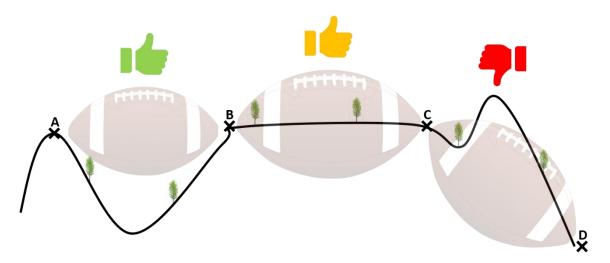


Figure 38 : Signal quality between 2 antennas depending on obstacles

Situation A - B : A concave terrain profile, without major obstacles

This is the ideal profile where the antennas are in line-of-sight. The radio signal quality is excellent, it is possible to make links up to more than 5 km. With an average tree density such a profile usually gives good signal quality up to 1 or 2 km.

<u>Situation B - C : A rather flat terrain profile without major obstacles</u>

This type of profile does not allow radio communication over long distances because most of the waves are absorbed by the ground or obstacles. With an average density of trees, it is possible to obtain a good signal quality up to 0.5 or 1 km if the transmitters are installed at a sufficient height.

<u>Situation C - D: A convex terrain profile with major obstacles</u>

All radio waves are absorbed by the ground. The signal quality is poor and it is not possible to establish a radio communication.

In addition to the topographic profile, it is important to note that the waves do not easily pass through the walls of a building, especially if it is made of metal. Metal acts as a mirror for the radio waves. This is why it is important to install antennas outside of buildings.

Types of antennas:

We offer 2 types of antennas to cover the different terrain needs (see section 1.8 page 48).

Omnidirectional:

Omnidirectional antennas provide 360 degree communication for distances up to 1 km in maple bush conditions. The range can be longer if there are no obstacles and the antennas are in line-of-sight.

Directional:

Directional antennas are used in specific cases where long ranges or signal strengthening in certain areas are required. These antennas allow communication in a particular direction over a longer distance.

What you need to remember to optimize radio communication:

- Install antennas high up so that the waves avoid as many obstacles and vegetation as possible.
- Add signal repeater(s) as needed to bypass major obstacles.
- Use a maximum of 50 ft (15.24 m) of cable for outdoor antennas.
- Choose the appropriate antenna for the desired function:
 - A directional antenna for long range in one direction.
 - An omnidirectional antenna for a limited range in all directions to see an entire area.

2.1.3 Interference

DATACER™ radio transmitters transmit in the 902-928 MHz frequency range.

If other communication devices are also transmitting in these same frequencies in the vicinity of the maple bush, the radio signal strength of the DATACER™ system may be greatly reduced. The interference may even prevent the DATACER™ system from operating.

Below you will find some equipment working with radio waves in the 900 Mhz range that may interfere with the DATACER™ system:

- A residential Internet tower.
- A cellular network tower.
- A residential Internet link to the sugar shack.
- A wireless alarm system.
- A portable walkie-talkie radio system.
- A camera system.

What to remember to minimize the impact of interference if it is not too strong:

- Ability to split your network into multiple networks to strengthen the signal locally.
- All types of interference in the 902-928 MHz band will degrade the quality of the DATACER™ network, whether the interference is continuous or sporadic.
- The only way to deploy a DATACER™ network in an interference environment is to move the transmitters closer together until the DATACER™ signal strength exceeds the interference.

2.1.4 Mesh network, paths and number of hops

DATACER™ radio transmitters operate in a mesh network. This means that each transmitter is able to exchange information with all the other transmitters in the network.

In a mesh network, it is important that as many transmitters as possible have different possible communication paths to the DATACER™ base. Maintaining at least two paths for a transmitter is essential to ensure a good transfer of information from each transmitter to the base and vice versa.

If the mesh configuration is not respected, some transmitters could become overloaded and not be able to relay the information to the base.

It is important to note that the DATACER™ base can manage a maximum of about 75 radio transmitters.

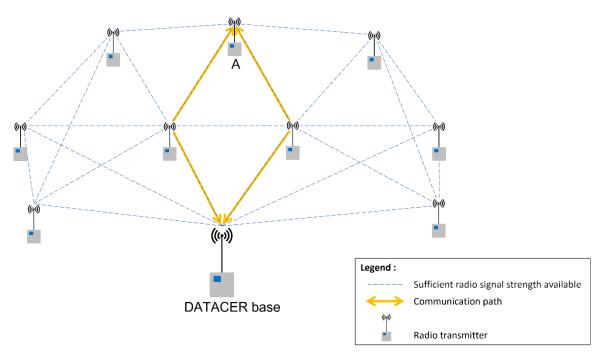


Figure 39: Mesh network with several paths or routes for each transmitter to the base

In Figure 39 the mesh Network is well constructed. The signal is of good quality between transmitters. Most Transmitters have several paths available to communicate with the base. This is for example the case of transmitter A which has two paths.

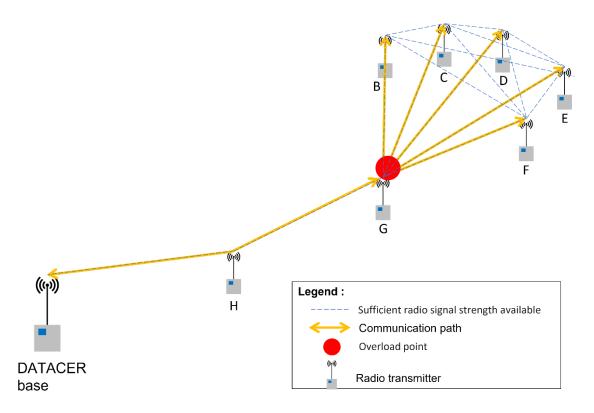


Figure 40: Network with a bottleneck or overload that can limit data communication

In Figure 40, Transmitter G must receive radio communication from transmitters B through F. Transmitter G has only one Path to communicate with the base. Therefore, an overload point occurs on transmitter G.

This phenomenon of overload can occur when the communication of about 15 transmitters must pass through a single transmitter which itself has only one path to communicate with the base. The lower the quality of the signal between transmitter G and the base, the lower the number of communications that transmitter G can carry.

If signal strength is sufficient, a transmitter will always favor direct communication with the DATACER™ base. In this case, the communication only needs to make one hop to get to the base.

If the signal strength does not allow direct communication with the base, then the transmitter may choose to go through one or more visible transmitters. The chosen path will therefore have several hops. As far as possible, the hop number should be limited and should not exceed 6.

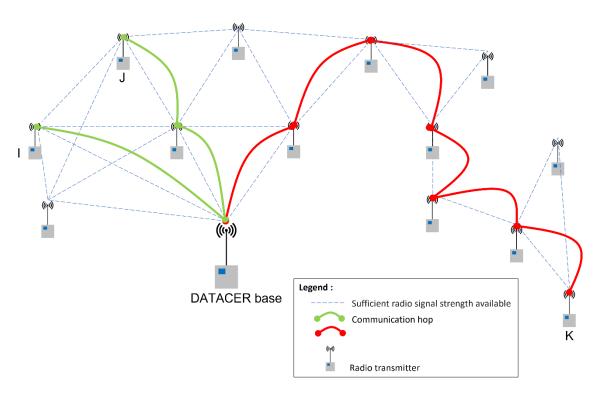


Figure 41: Comparison of the number of hops for different transmitters in a network

In Figure 41, it is possible to view the hop number for 3 different transmitters. The transmitter K hop number is higher than transmitters I and J.

What you need to remember to optimize the proper transfer of data:

- Possibility of moving transmitters or add signal repeaters to diversify transmitter the paths.
- Possibility of splitting your network into several networks to reduce the hop number.

2.2 DATACER™ base

The DATACER™ base is usually installed in your sugar shack or in a building near your transmitter network.

To be installed away from any heat sources and water points.

Prerequisite: Install the antenna on the sugar shack (see section 2.8 page 119).

Connect the electrical cord of the UPS to 120 V power at least 8 hours before turning it on.

- 1. Connect the electrical cord of the UPS battery to 120 V.
- 2. Connect the antenna cable to the antenna and the base.

2.2.1 DATACER™ bases with DA numbers lower than 1200

DATACER™ systems with DA numbers lower than 1200 always require the presence of the DATACER™ router. If you wish to remove the DATACER™ router for these DAs, then it is necessary to change the IP address of the NUC and switch it from a fixed address to a DHCP address (dynamic address). Contact the technical team if necessary.

3. Connect the Ethernet cable from your router or Internet-providing equipment to the blue socket on the DATACER™ router.

4. Connect the DATACER™ router to the DATACER™ base. The Ethernet cable must be plugged into one of the yellow sockets.

Connecting additional equipment to the DATACER™ Router and changing its configurations requires prior evaluation by our technical team. Please contact us.

- 5. Connect the screen to the base with the VGA cable.
- 6. Plug the power cord into the screen.
- 7. Insert the mouse and keyboard transmitter into the base.
- 8. Connect the power cords from the screen, base computer (NUC), base transmitter and router to the UPS battery.

Figure 42 : Connected DATACER™ base

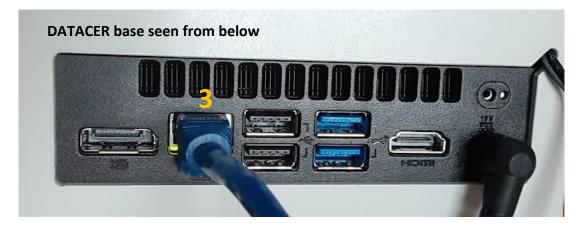
Backup battery connection area.

It is important to connect the power cord of the base computer (NUC) to the battery backup part of the battery. In this way, the power supply to the NUC is maintained in the event of a power failure.

Here is how to connect your DATACER™ base to the UPS battery:

Figure 43 : Connecting the DATACER™ base to the UPS battery

- Base computer power cord (NUC).
- DATACER™ Router power cord.
- Base Radio Transmitter Power Cord.
- 4 Electrical cord of the screen.


2.2.2 DATACER™ bases with DA numbers greater than or equal to 1200

New DATACER™ bases (DA greater than or equal to 1200) are no longer equipped with routers.

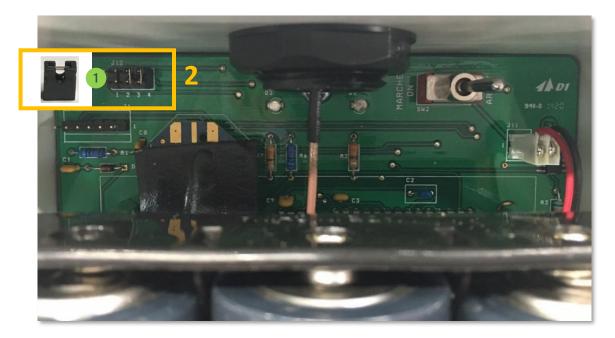
The DATACER™ base installation procedure is identical to the section above, with the exception of step 3.

3. Insert the Ethernet cable from your internet provider (satellite, hotspot cell, home internet, etc.) into the DATACER™ base computer (NUC).

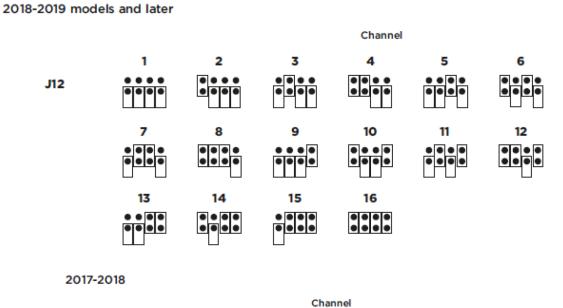
2.2.3 Assigning or changing the channel of a radio transmitter

Each DATACER™ system has its own radio channel. All radio transmitters in your system must be on the same channel as your DATACER™ base.

One or more jumpers installed on specific pins on each transmitter board allow to have up to 16 channels available.



1. Check and note the factory preset channel of your DATACER™ base.


Figure 44 : Finding your DATACER™ base channel number. Inside view of the DATACER™ base cover

2. Position the jumper(s) on the transmitter board pins according to the combination that matches with the DATACER™ base channel.

1 Jumper

J12

A

Figure 45: Jumper position on pins correspondence and transmitter channel number

For DATACER™ stations, please ignore the fifth row of pins and follow the diagrams above.

2.3 Vacuum transmitters (single, double and triple)

1) Install the end of line vacuum transmitters on wooden stakes at least 8 ft (2.5 m) high. To do this, a $\frac{1}{2}$ in. (6.35 mm) sheet metal screw can be used on a 2 x 3 in. (5.08 x 7.62 cm) or 2 x 4 in. (5.08 x 10.16 cm) wooden stake.

Figure 46 : Sheet metal screws on wooden stake for installation of a vacuum transmitter

Example of $\frac{1}{4}$ in. (6.35 mm) sheet metal screws on a 2 x 3 in. (5.08 x 7.62 cm) or 2 x 4 in. (5.08 x 10.16 cm) wooden stake.

Install the antenna upright. The transmitter should be attached to the end of the wooden stake to clear the antenna 360 degrees for a minimum distance of 3 ft (1 m) (See Figure 48 below).

Installing vacuum transmitter on top of wooden stake is a possible way. You can also install your transmitters directly on the trunk of a tree, making sure that radio communication is optimal. See section 4.2 page 210 for more information.

Figure 47 : Vacuum transmitter not properly installed

Figure 48 : Vacuum transmitter properly installed

2) Position the Transmitters on the high points closest to their line ends.

In a sugar bush, maine lines are usually positioned in the lower areas of the land to optimize the downhill slope required for the 5/16 in. (7.94 mm) pipe.

In Figure 49 below, the transmitters are positioned right next to the end of the line. Because of the obstacles, the signal strength with neighboring transmitters will be weak. This installation method may affect the responsiveness of the system.

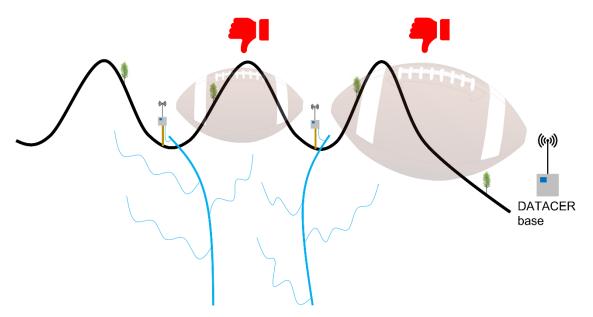


Figure 49 : Vacuum transmitters installed in lower areas

In Figure 50 below transmitters are positioned on high points to optimize signal strengths.

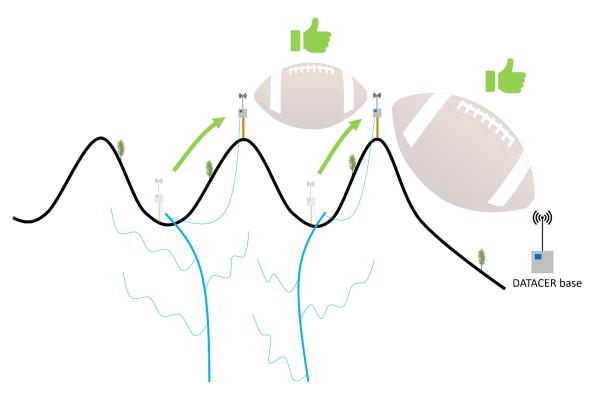


Figure 50 : Vacuum transmitters installed on high points

Position the transmitters on the high points of your terrain to optimize the responsiveness of your system. See section 2.1 page 53 for a reminder of the principles of radio communication applied to the DATACER™ system.

3) Connect the transmitter to the end of the main line and keep a downward slope.

5/16 in. (7.94 mm) pipes connected to the line end must always slope downward from the transmitter to the line end. If the vacuum transmitter is double or triple, then all pipes connected to the transmitter must follow this recommendation.

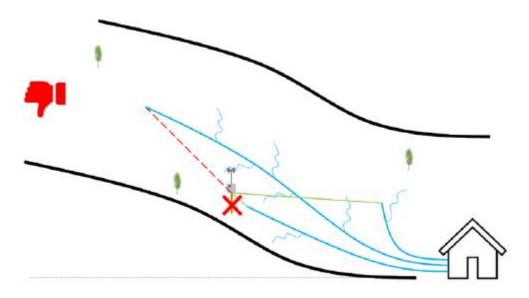


Figure 51: Slope not adhered to with for one of the 5/16" pipes connected to the transmitter.

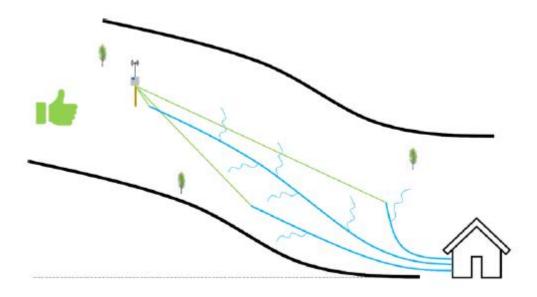


Figure 52: Slope adhered to for all 5/16" pipes connected to the transmitter.

Keeping the right slope will prevent sap from running up the 5/16 in. (7.94 mm) pipe to the transmitter. Sap build-up in the 5/16" (7.94 mm) pipe connected to the transmitter can distort the vacuum level reading and eventually break the sensor if sap rises to it.

4) Allow a minimum height of 2 feet (60 cm) between the transmitter and the end of the line, regardless of the length of pipe unwound.

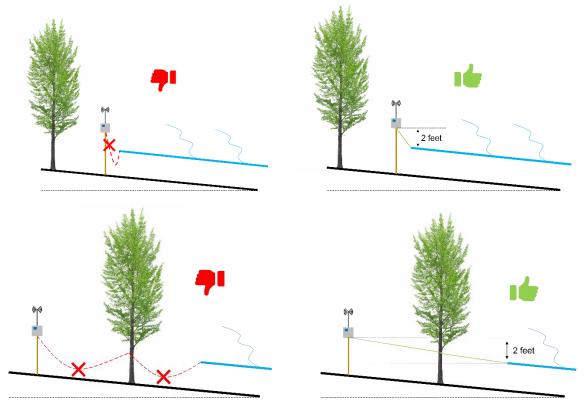


Figure 53: Steady pipe slope 5/16" (7.94 mm) adhered to.

Figure 54: Steady pipe slope 5/16" (7.94 mm) and minimum height not adhered to

You can roll out as much 5/16 in. (7.94 mm) pipe as needed as long as you maintain the downward slope from the transmitter to the line end. If you are not sure, you can use a level to verify that slope is right.

For ease of installation and removal of the 5/16 in. (7.94 mm) pipe, we recommend to bevel cut the end of the pipe. Install the clamping ring to ensure a tight seal. The clamping ring acts as a plug at the end of the season.

Figure 55: Bevel cut 5/16" (7.94 mm) pipe for easy installation and removal from the transmitter vacuum port

2.4 Tank level, pressure, combined transmitters

To find out which sensor can be connected to your transmitter, refer to the checked boxes on your electronic board (see Figure 56 below). This information is available from electronic board versions 6.0 and higher.

L = ultrasound sensor

P = pressure sensor

X = vacuum sensor

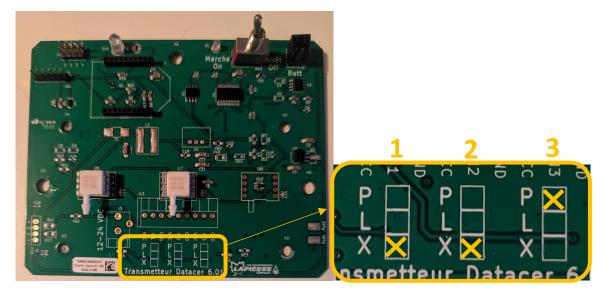


Figure 56: To know which sensor can be plugged in for a tank level, pressure or combined transmitter

In the example above, it is possible to connect a vacuum sensor to positions 1 and 2 and a pressure sensor to position 3.

If there is no indication on the board, please consult your Lapierre advisor to find out which sensor(s) you can add to your board without making any changes.

2.4.1 Tank level transmitters (L, LL, LLL)

Install the Transmitter in your pumping station away from all heat sources.

Connect the cable and antenna to the transmitter.

1) Install the stand above the tank, preferably in the centre and on the opposite side (or at least 60 cm [24 in.]) from the liquid inlet (sap, concentrate, or filtrate).

Figure 57 : Tank level sonar sensor installed

Leave at least 2 ft (60.96 cm) of space between the sensor and the ceiling. Refer to the outline below.

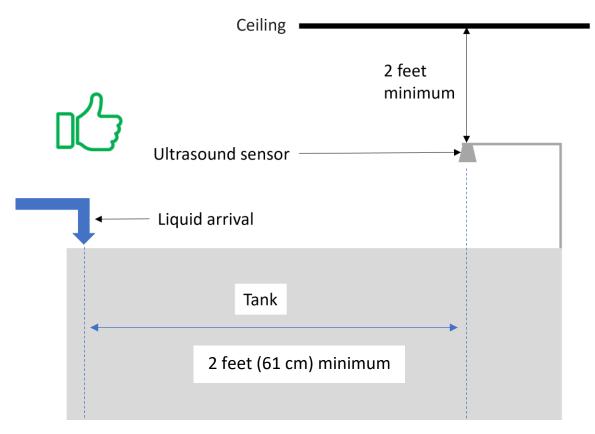


Figure 58 : Ultrasonic sensor installation outline to measure a tank level

In Figure 59 below, the sensor is installed incorrectly, as it is not centred in relation to the tank. Given that the bottom of the tank is convex, the sensor should be centred on the lowest part of the tank to be able to measure the full level amplitude. In addition, the sensor is positioned too close to the water inlet.

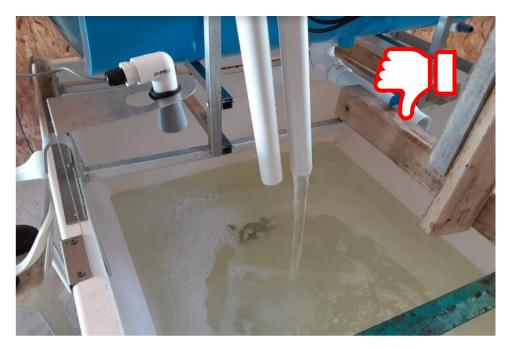


Figure 59: Ultrasonic tank level sensor not properly installed

2) Install the sensor on the bracket.

3) Connect the sensors wires to the transmitter board according to the outline below.

Tank level transmitter (L)

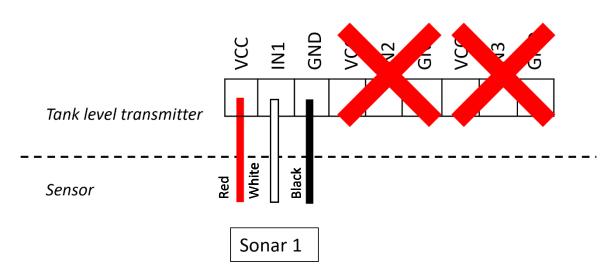


Figure 60 : Sonar sensor connection for a single tank level transmitter (L)

Figure 61: Interior view of a single tank level sonar (L)

Tank levels transmitter (LL)

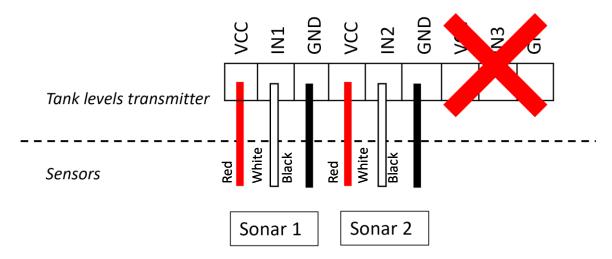


Figure 62 : Sonar sensor connection for a double tank level transmitter (LL)

Tank levels transmitter (LLL)

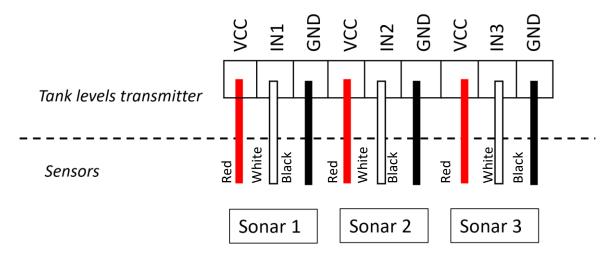


Figure 63: Sonar sensor connection for a triple tank level transmitter (LLL)

4) Connect the electrical cord to 120 V.

2.4.2 Pressure transmitters (P, PP, PPP)

Install the transmitter in your pumping station away from all heat sources.

Connect the cable and antenna to the transmitter.

1) Install the pressure sensors.

Do not clean sensors under high pressure and do not disassemble them.

Screw-in sensors:

Figure 64 : Screw-in pressure sensor installed

If the pressure sensor is used to measure a tank level, it is recommended to install it on the discharge outlet opposite side to prevent pump starts from distorting the pressure measurement.

Submersible sensor:

The sensor should be supported and positioned vertically at the bottom of the tank to prevent the liquid from freezing. The sensor should be centred on the lowest part of the tank to be able to measure the full level amplitude.

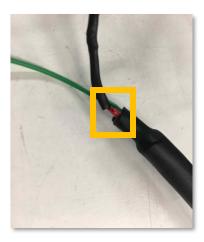


Figure 65: Submersible sensor installed

If the wires are extended, it is important to leave the red straw exposed.

2) Connect the sensors wires to the transmitter board according to the outline below.

Refer to the wiring diagram that matches the board version. Please refer to Figure 67 page 83 to locate the transmitter board version number.

Pressure transmitter (P) - version 5

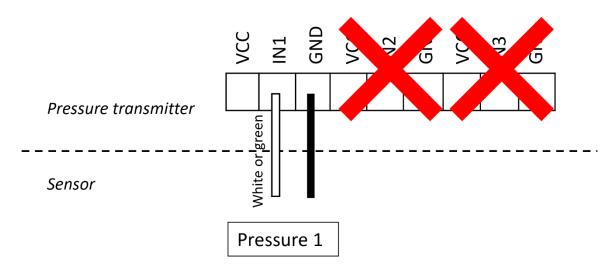


Figure 66 : Pressure sensor connection for a single pressure Transmitter (P) - Version 5

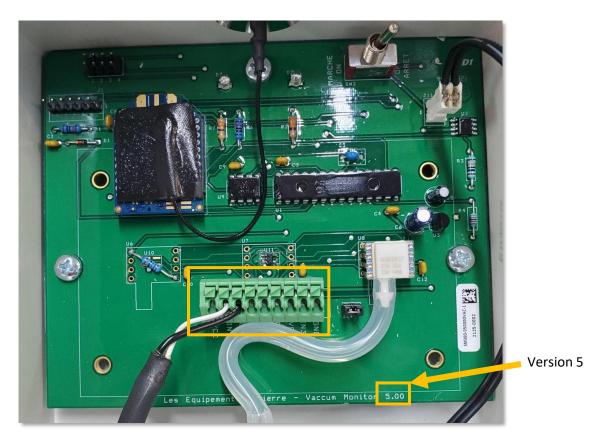


Figure 67 : Internal view of a single pressure transmitter (P) - version 5

Pressures transmitter (PP) – version 5

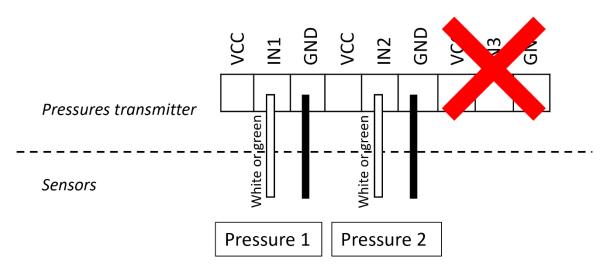


Figure 68 : Connection of pressure sensors for a double pressure transmitter (PP) - version 5

Pressures transmitter (PPP) - version 5

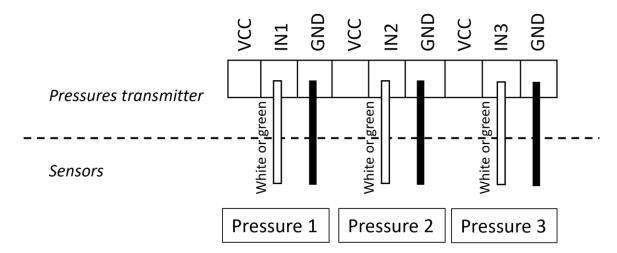


Figure 69 : Connection of pressure sensors for a triple pressure transmitter (PPP) - version 5

Pressure transmitter (P) - version 6

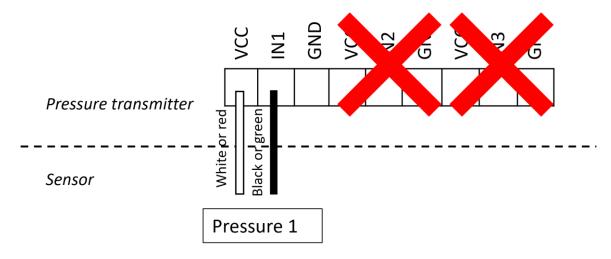


Figure 70 : Connection of pressure sensors for a single pressure transmitter (P) - version 6

Pressures transmitter (PP) - version 6

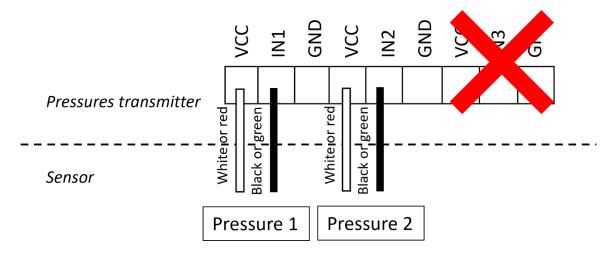


Figure 71 : Connection of pressure sensors for a double pressure transmitter (PP) - version 6

Pressures transmitter (PPP) - version 6

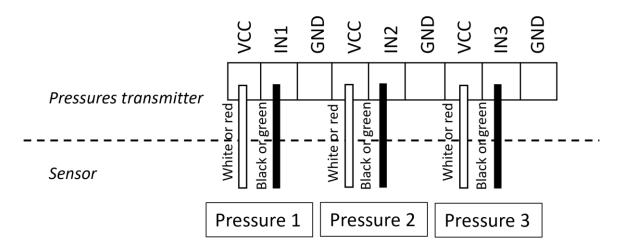


Figure 72: Connection of pressure sensors for a triple pressure transmitter (PPP) - version 6

3) Connect the electrical cord to 110 V.

2.4.3 Combined transmitters (LV, LLV, PV, PPV, PLL, PLV)

- 1) Install the transmitter in your pumping station away from all heat sources.
- 2) Install the sonar and pressure Sensors in the same manner as the tank level and pressure transmitters (See section 2.4 page 73 and section 2.4.2 page 79).

The order in which the pressure sensors are connected to the board is also important for the PV, LV and PLV models. Please see the connection example for a PV and PLV transmitter version 6 below.

Combined transmitter (PV) - version 6

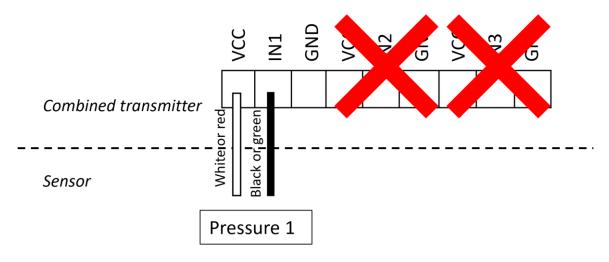


Figure 73 : Pressure sensor connection for a PV combined transmitter - version 6

Combined transmitter (PLV) - version 6

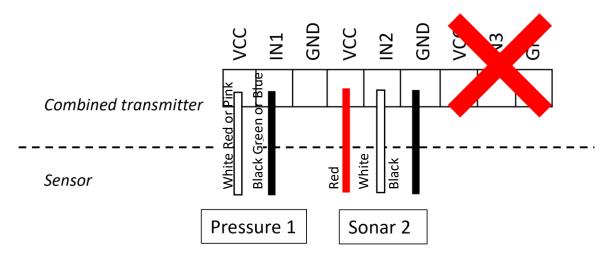


Figure 74: Pressure and sonar sensors connection for a PLV combined transmitter - version 6

3) Connect the vacuum pipe on the extractor side.

The vacuum sensors of these transmitters are mainly used to measure the vacuum level at the extractor.

The 5/16 tubing must have a constant downward slope from the transmitter to the extractor to prevent water accumulation. Water accumulation in the tubing could cause incorrect vacuum level readings and damage the vacuum sensor.

Figure 75 : Connecting the 5/16" (7.94 mm) pipe to the extractor

2.5 DATACER™ station

The DATACER™ station is installed in a pumping station.

1) Mount the station on a wall inside your pumping station.

The installation of the station must be 6.5 ft (2 m) away from any drives or powerful electric motors (vacuum pump) to avoid interference.

2) Attach the antenna on the roof top and connect the antenna to the DATACER™ station with the antenna cable.

Connect the cable and antenna to the station.

- 3) Install the sensors and other DATACER™ station peripherals on your pumping station equipment (see below).
- 4) Connect the peripherals to your DATACER™ station (see below).

Connections to connect sensors and peripheral tools.

Figure 76 : DATACER™ station connection of a device with a connector

- 2 Example of plugged connectors, screws towards the top.
 - 5) Connect the vacuum pipe to the DATACER™ station vacuum port (same method as Figure 55 page 73).

The 5/16 tubing must have a constant downward slope from the transmitter to the extractor to prevent water accumulation. Water accumulation in the tubing could cause incorrect vacuum level readings and damage the vacuum sensor.

6) Connect the two electrical cords to 120 V.

Turn off the DATACER™ station (see section 4.3.2 page 221) and unplug both power adapters before connecting devices.

2.5.1 Relay for vacuum pump start without drive

1) Connect the relay box to the DATACER™ station.

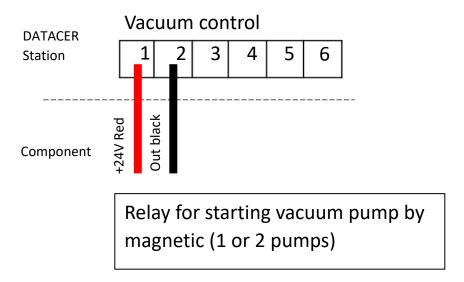


Figure 77 : Vacuum pump start relay connection to the DATACER™ station

2) Connect the relay box to the vacuum pump contactor

The pump switch connects to positions 1 and 2. It is a simple NO contact 5A max. To have an NC contact, simply move the wire from position 14 to position 12.

Position 1 = neutral

Position 2 = 24V

Figure 78: Interior view of a vacuum pump magnetic starter relay box

The relay box connection to the vacuum pump contactor must be done by a qualified electrician. The work must be carried out in accordance with the local regulations in force.

2.5.2 DATACER™ connection for start/stop and speed variation of a vacuum pump with drive

- 1) Disconnect the potentiometer wires from the drive and leave the original jumpers on the drive.
- 2) Connect the DATACER™ connection wires to the drive.
- 3) Connect the DATACER™ connection wires to the DATACER™ station.

If you have another drive model than the Yaskawa V1000, A1000, GA500, MV040 Bush, Techtop 20 or 350 please refer to your electrician for the connection to the DATACER™ station. The speed setpoint sent to the drive is a 2-10 V signal (white wire below). The station also provides a dry contact (normally open) to start the drive (red and black wire below).

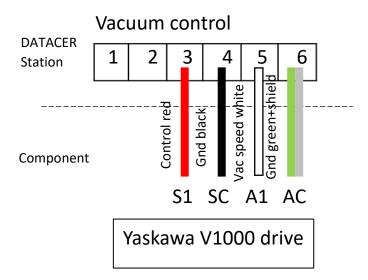


Figure 79 : Yaskawa V1000 drive connection to the DATACER™ station

		Wire positions on the DATACER™ station			
		3 Red	4 Black	5 White	6 Green
Wire positions on the drive	V1000 - Yaskawa	<i>S</i> 1	SC	A1	AC
	A1000 - Yaskawa	<i>S</i> 1	SN	A1	AC
	GA500 - Yaskawa	<i>S</i> 1	SN	A1	AC
	Mink MV040 - Busch	8	6	2	3
	TD350 -Techtop	<i>S</i> 1	СОМ	Al1	GND
	TD20 - Techtop	<i>S</i> 1	СОМ	Al2	GND

Figure 80 : Main drives connection to the DATACER™

If the wire is extended, the shield should not be connected to the drive.

The potentiometer wires must be removed on the drive side.

	Jumpers	DIP Switches	
V1000 – Yaskawa	Keep HC – H1	S1 = V	
V1000 — Taskawa	кеер пс – пт	S3 = sink	
	Keep SP – SC	S1 = I	
		S2 = off	
		S3 = sink (see manual	
A1000 – Yaskawa		A1000)	
		S4 = analog	
		S5 = According to settings	
		(see manual A1000)	
		S6 = N.C.	
		S1 = I	
GA500 – Yaskawa	Keep SP – SC	S2 = off	
		S5 = V	
Mink MV040 - Busch	Remove 6 - 8 and 1 - 2	SW = position 0	
WITHK IVI VO40 - DUSCII	Nemove o - o and 1 - 2	SW2 = position 1	
	Keep +24V - H1		
TD350 – Techtop	Keep +24V - PW	SW2 = V	
10350 – Techtop	Keep +24V - H2	SW3 = off	
	Keep +CME - COM		
		AO1=V	
TD20 – Techtop	Keep +24V - PW	AO2=V	
1020 - Techtop	Neep +24ν - Γνν	AI2=V	
		485=Off	

Figure 81: Jumper and DIP switch positions on the main drives

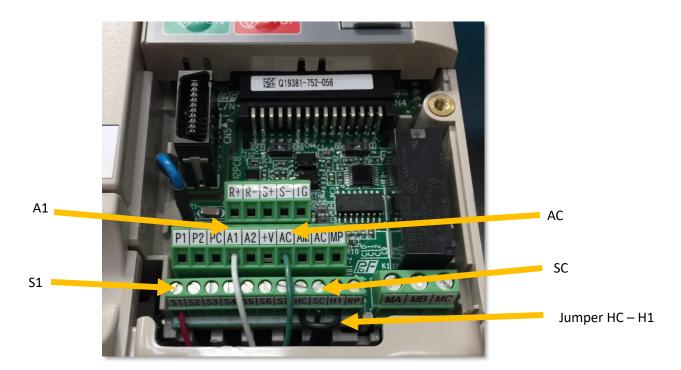


Figure 82 : Connection of a Yaskawa V1000 drive

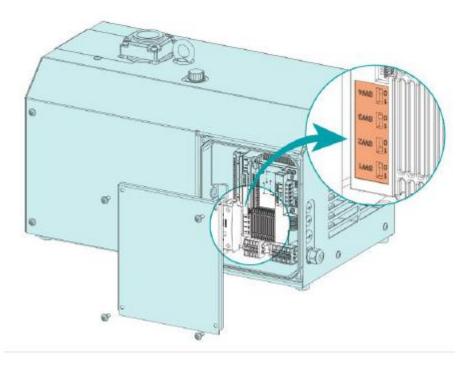


Figure 83: DIP switch position on MV040 Bush pump.

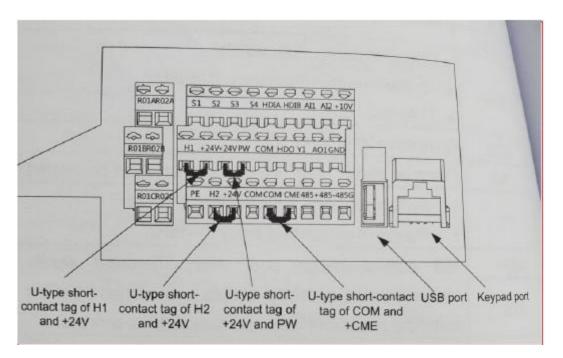


Figure 84: Jumper positions to be retained for TD350 Techtop drives

Figure 85: Jumper position to be kept for TD20 (Techtop) drives

2.5.3 Vacuum modulation valve

1) Install the valve on the air pipe between your Extractor and your Humidity trap.

Figure 86 : Vacuum modulation valve installed

- Extractor.
- 2 Humidity trap.

2) Set the selector switch to 0 position

3) Connect the valve to the DATACER™ station.

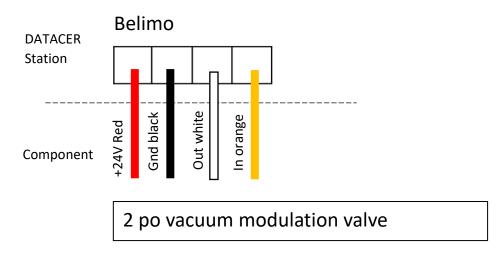


Figure 87 : Modulation valve connection to the DATACER™ station

2.5.4 Extractor emergency stop float

1) Install the float on your extractor. It is possible to adjust the float height on the horizontal extractor model thanks to the tightening ring.

Figure 88: Horizontal extractor emergency float installed – extractor outside view

Figure 89 : Horizontal extractor emergency float installed – extractor inside view

2) Connect the float to the DATACER™ station.

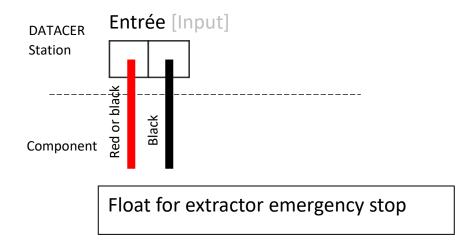


Figure 90 : Extractor emergency stop float connection to the DATACER™ station

Please operate the float manually to ensure that the modulating valve remains closed as long as the float is held in the upper position. If the valve opens instead of closing when the float is in the upper position, remove the white cylinder, swap it and install it again.

2.5.5 Water pump control

1) Install the electrodes in the tank

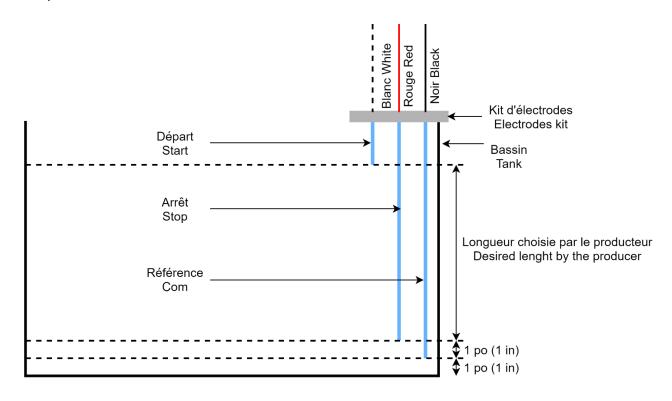
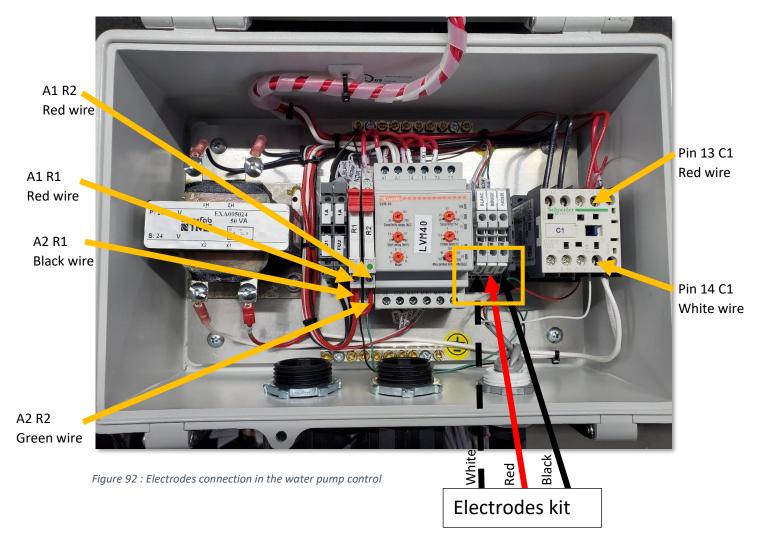


Figure 91: Water pump control electrodes installed in a tank


Position the foam pucks properly (see Figure 15 page 37) to prevent the tip of the Electrodes from touching the tank walls.

It is possible to cut the electrodes to fit the height your tank.

2) Connect the electrodes to the pump control.

The electrode kit cable (3 wires) comes with a shield. The black wire and shield must be connected to the connection marked "Black" on the pump control.

Figure 93 : Lovato relay default settings

Lovato relay selector switches	Default position
Sensitivity range (k Ω)	100
Start delay (min)	0
Mode	Α
Sensitivity (%)	25
Sensor delay (s)	1
Max sensor sensitivity (k Ω)	OFF

If the pump does not start, increase the Sensitivity %. If the pump does not stop, decrease the Sensitivity %.

If the sensitivity setting (%) is not sufficient, then change the sensitivity range ($k\Omega$). If the pump does not start, increase the sensitivity range ($k\Omega$). If the pump does not stop, decrease the sensitivity range Sensitivity range ($k\Omega$).

3) Connect the pump control to the DATACER™ station.

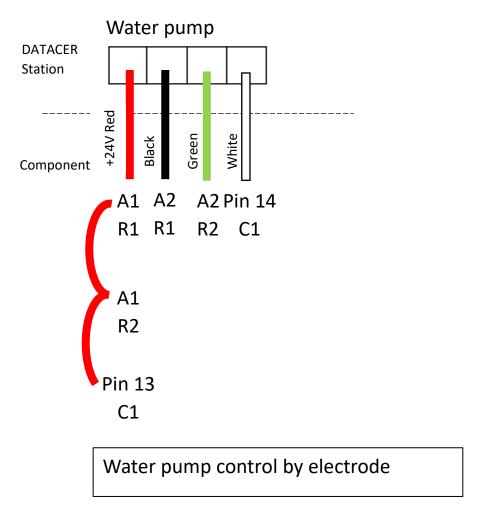


Figure 94 : Water pump control connection to the DATACER™ station

4) Connect the water pump control to the electric current.

The connection of the water pump control to the electric current must be done by a qualified electrician. The work must be carried out in accordance with the local regulations in force.

2.5.6 Maple sap meter

Requirements:

- Thoroughly rinse maple sap meter with water before installation
- Use Teflon for all screw connections
- 1. Install the meter horizontally, with the dial facing up and parallel to the ground (see Figure 95 below)

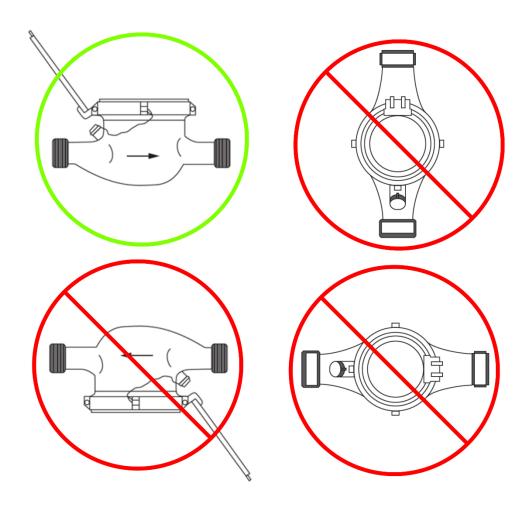
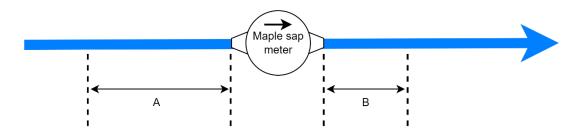



Figure 95: Maple sap meter positioning

For optimal results, we strongly recommend keeping the DATACER™ station, the maple sap meter, and the connection cables arriving at the DATACER™ station at least 2 m (6 feet) away from any drives or powerful electric motors to avoid picking up as much interference as possible.

- 2. Adhere to the direction of flow indicated by the arrow on the meter.
- 3. Provide a length of rigid pipe (PVC or stainless steel) A (downstream) and B (upstream) with the same diameter as the maple sap meter to avoid turbulence (see diagram and table below).

	Section A		Section B		
Sap Meter Diameter (in.)	Min. Length (in.)	Diameter (in.)	Min. Length (in.)	Diameter (in.)	
1.5	15	1.5	7.5	1.5	
2	20	2	10	2	

Figure 96: Lengths and diameters of sections upstream and downstream of the maple sap meter

Please install a standard check valve after the maple sap meter to prevent maple sap from flowing back when the sap pump is switched off. The maple sap meter also records maple sap flowing in the opposite direction from the normal flow.

We recommend installing a banjo filter upstream of the maple sap meter. This makes it easier to remove any debris that may accumulate upstream of the meter.

Use clear tubing to observe the presence of any air bubbles that might distort the volume counted. If you notice air bubbles, please refer to section 5.15 on page 300.

If you plan to drain your transfer pipe, the volume of maple sap returning to the tank will be counted again by the maple sap meter the next time the pump is started. This is why we recommend installing an air injection system to limit the amount of maple sap backflow caused by draining. Please refer to our recommendations in the appendix 6.9.2 on page 314.

If there is no drainage, you can install the maple sap meter directly at the pumping station. See Figure 97 and Figure 98 below.

Here are the main installation configurations that may be encountered on site. They include a reminder of the required and recommended equipment (check valves and filter).

Station tank

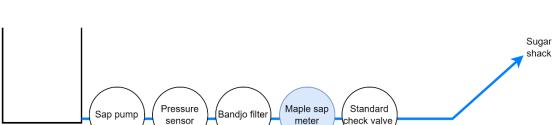


Figure 97: Installation of a maple sap meter in a pumping station on the return pipe of a tank in the absence of drainage

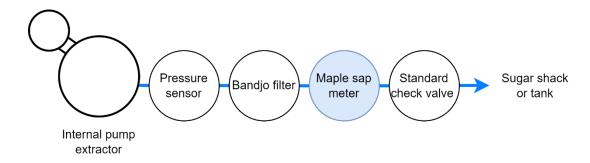


Figure 98: Installation of a maple sap meter in a pumping station on the return pipe of an internal pump extractor

4. Connect maple sap meter to DATACER™ station.

Please use one of the two diagrams below that corresponds to your physical version of the DATACER™ station.

To it

To identify the physical version of the DATACER™ station, please see Figure 8, page 31.

If your maple sap meter is connected to the "sonar" input of a DATACER™ station 1.7 version, we recommend installing an anti-noise module that filters potential interference generated inside your pumping station. This module will therefore allow you to get better precision readings and reliable volumes.

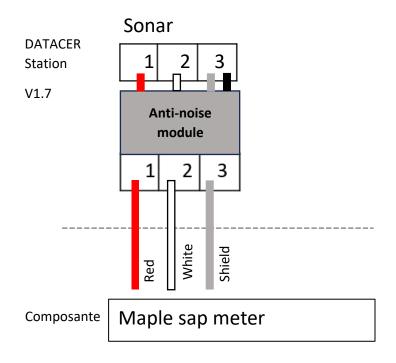
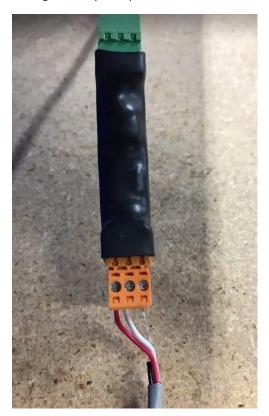


Figure 99: Maple sap meter connection diagram to DATACER station version 1.7 (blue or white card)


Procedure for installing the anti-noise module:

- 1. Turn off the DATACER™ station
- 2. Unplug the maple sap meter
- 3. Plug the electronic module into the "sonar" input

4. Plug the maple sap meter into the anti-noise module

5. Turn ON the DATACER™ station

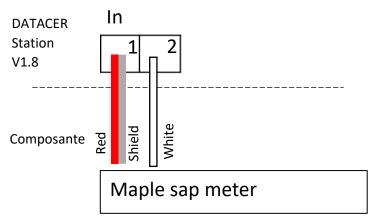


Figure 100: Maple sap meter connection diagram to DATACER station version 1.8 (red or black card)

If the meter is connected to the "sonar" input, the shield (wire without sheath) must be plugged into position 3 of the "sonar" input or the electronic module. If the meter is connected to an "In" input, the shield (wire without sheath) must be plugged into position 1 of the "In" input.

First use of the season

- Follow the installation recommendations above.
- Fill the meter with water before the first start-up. This can be done via the upstream banjo filter.

End-of-season storage

- Clean with soap, then disinfect the inside of the meter.
- Drain the meter to prevent residual maple sap from freezing.

2.5.7 Drain valve

1) Valve installation.

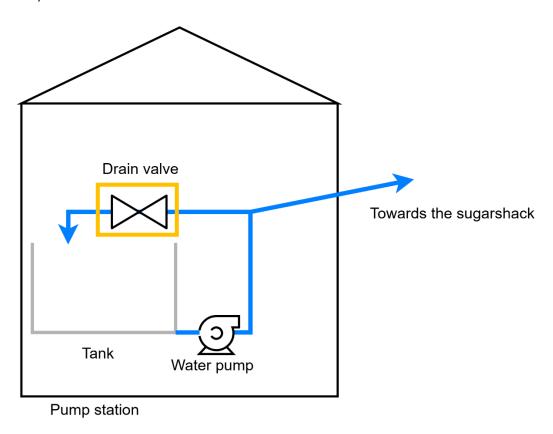


Figure 101 : Drain valve installation diagram

2) Connect the Drain valve to the DATACER™ station.

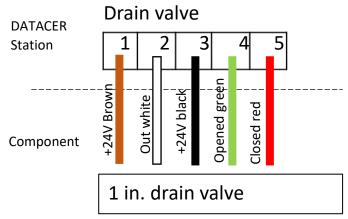


Figure 102 : Drain valve connection to the DATACER™ station

2.5.8 Air valve

1) Install the valve after the compressor.

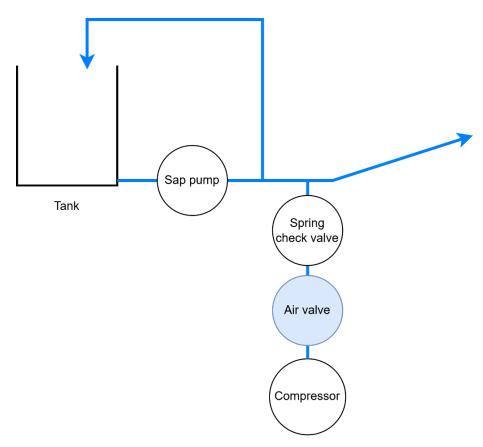


Figure 103: Air valve installed

Install a "spring-loaded" check valve after the valve to prevent any water from returning to the compressor.

2) Connect the valve to the DATACER™ station.

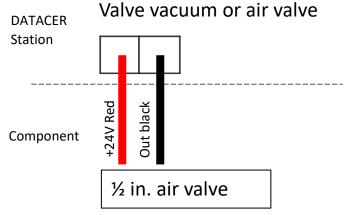


Figure 104 : Air valve connection to the DATACER™ station

2.5.9 Internal temperature sensor

1) Connect the sensor to the DATACER™ station.

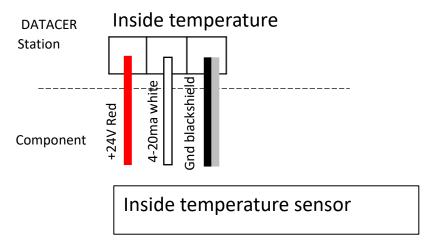


Figure 105 : Internal temperature sensor connection to the DATACER™ station

2.5.10 External temperature sensor

1) Install the sensor outside the station.

To optimize the accuracy and measurement's reliability, the sensor should be installed according to the following criteria:

- Facing north
- At least 6 ft (1.83 m) from walls
- At least 6 feet (1.83 m) above the ground (no obstacles, objects, or branches below).
- Hanging from the top without anything above

The sensor must be kept away from all heat sources.

In Figure 106 below, the sensor is incorrectly installed, as it is positioned too close to the pumping station. Heat leaving the station through the door and the vacuum pump exhaust pipe can accumulate under the roof and directly influence the temperature reading.

Vacuum pump exhaust pipe

Figure 106: Exterior temperature sensor incorrectly installed.

The sensor can be suspended from a master line or branch as long as the above criteria are met (e.g. Illustration Figure 107 below).

Figure 107: External temperature sensor installed

2) Connect the sensor to the DATACER™ station.

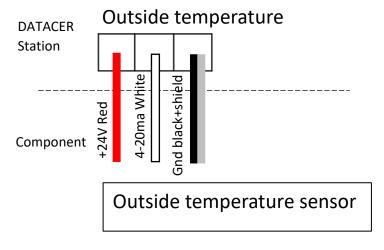


Figure 108 : External temperature sensor connection to the DATACER™ station

2.5.11 Tank Level Sensor

- 1) Install the bracket and sensor in the same way as for the tank level transmitters (see section 2.4 page 73).
- 2) Connect the sensor to the DATACER™ station.

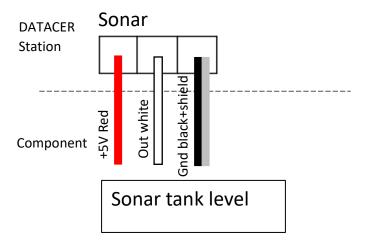


Figure 109 : Sonar tank level sensor connection to the DATACER™ station

2.5.12 Pressure sensor

- 1) Install the pressure sensor in the same way as for the pressure transmitters (see section 2.4.2 page 79).
- 2) Connect the pressure sensor to the DATACER™ station.

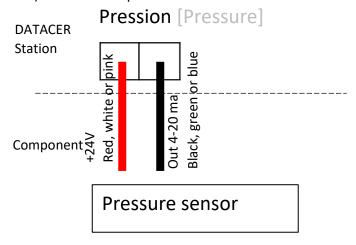


Figure 110 : Pressure sensor connection to the DATACER™ station

2.5.13 Humidity Trap

1) Connect your humidity trap to the DATACER™ station.

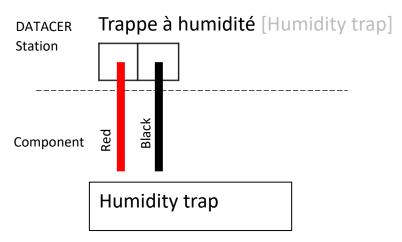


Figure 111 : Humidity trap connection to the DATACER™ station

2.6 Gateway

Prerequisites:

If the gateway is equipped with a radio, then the gateway acts as a new network coordinator. We recommend separating the networks geographically according to their channels to limit the risk of interference.

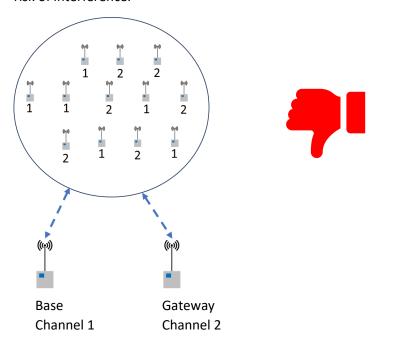


Figure 112: The base station radio network (channel 1) is not separated from the gateway radio network (channel 2), so there is a risk of interference.

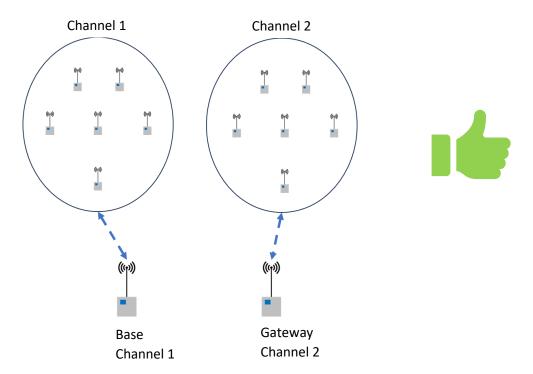


Figure 113: The radio networks are geographically separated, limiting the risk of interference.

- Keep the gateway at least 2 m (6.5 ft) away from drives and powerful electric motors (vacuum pumps) to avoid interference.
- The local or internet network provided by the customer must be operational (see Figure 117 and Figure 118 below).
- 6. For a radio-equipped gateway, please connect an antenna.

If there is another transmitter in the building, please install the gateway antenna outside first.

- 7. Connect the gateway to the customer's local area network (LAN) OR internet provider (hotspot, satellite, residential, etc.) using an Ethernet cable.
- 8. Connect the gateway to the DATACER™ station using the appropriate cable (if necessary).
- 9. Connect the gateway's power adapter (white cable).

We recommend connecting the gateway's power adapter to a backup battery (UPS). This battery is available from your LAPIERRE EQUIPMENT distributor.

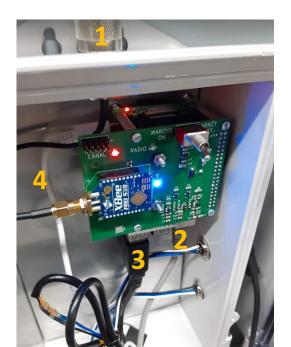


Figure 114: Gateway side

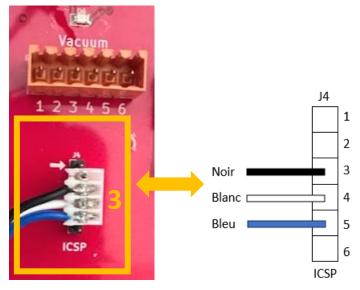


Figure 115: DATACER $^{\text{TM}}$ station side (version 1.7 and 1.8 - blue, white, and red board)

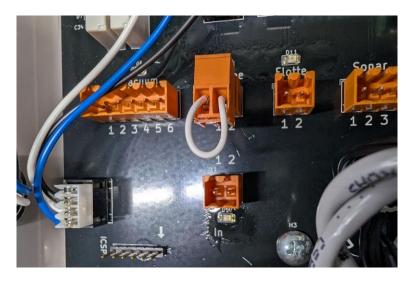


Figure 116: DATACER™ station side (version 1.8 - black board)

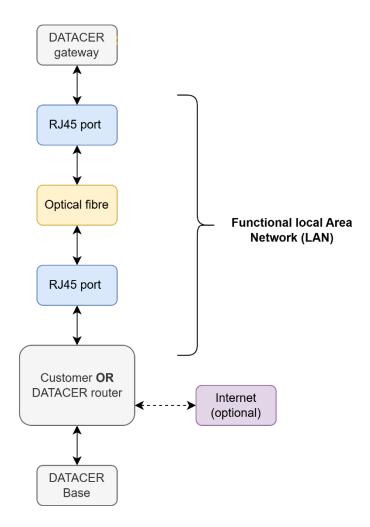


Figure 117: Functional local area network (LAN)

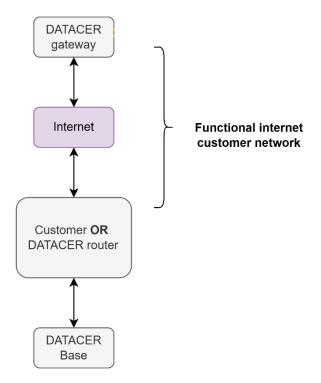


Figure 118: Customer internet network in operation

2.7 Repeaters

2.7.1 Standard antenna repeater whip and alkaline batteries

Install the repeater on a wooden stake in the same way as for the vacuum transmitters (see section 2.3 page 67).

2.7.2 Repeater without antenna and connected to power

Install the repeater as a transmitter that goes into a station. See the installation of a tank level transmitter as an example (see section 2.4 page 73).

2.8 Cable and antennas

1) Firmly install a mast on the roof of the building. A mast preferably made of PVC, aluminum or steel.

The installation of the antenna must be solid to prevent it from oscillating in the wind.

- 2) Install the antenna support on the mast.
- 3) Install the antenna on the support on top of the mast. The antenna must meet these 3 criteria:
 - Be at least 3 ft (1 m) above the highest roof ridge of the building.
 - Be at least 16 feet (5m) above ground level.

Be clear of any object such as branches, trunks or metal parts within 3 ft (1 m).

An omnidirectional antenna is always installed at the end of the mast. If it is necessary to use a directional antenna on the same mast, the directional antenna can be positioned below the omnidirectional antenna.

For the orientation of the directional antennas it is important to respect the degree of orientation to point to the desired location.

4) Fix the cable all along the mast to the N connector of the transmitter inside the building

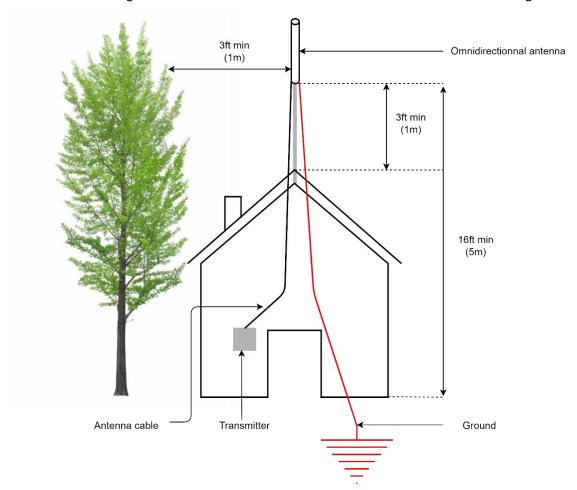


Figure 119: Installation diagram of an antenna outside a building

It is recommended that the cable length for a radio transmitter not exceed 50 ft (15.24 m). Beyond this length, the transmission and reception signal strength are reduced.

Figure 120: Antenna on a building improperly installed

Figure 121 : Antenna on a building properly installed

Grounding of the antenna is important to avoid surge problems in case of lightning. See Appendix 6.3 page 309 for details.

5) Seal outdoor antenna connections with Coax-seal.

Wrap the Coax-seal strip around the connection and mold with your fingers to expel air and ensure a complete seal. See examples Figure 122, Figure 123 and Figure 124 below.

Seal all external connections on both the antenna and transmitter sides. A waterproof connection will prolong radio communication performance over the long term.

Antenna side:

Figure 122 : Antenna Coax-seal option B or C

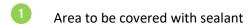


Figure 123 : Antenna Coax-seal option A

Transmitter side:

Figure 124 : Transmitter Coax-seal

We recommend using the option B or C antennas for outdoor installations and reserve the option A antennas for indoor use.

3. Interface settings

Summary of the vocabulary and data structure used in the interfaces to better understand how your DATACER™ system can adapt to your reality. You will also find all the necessary steps to set up the different interfaces before using the system's features.

Below is a list of the topics that are covered in this section.

3.1	Vo	cabulary and data structure	125
3.2	DA	ATACER™ Interface	126
	3.2.1	Accessing the Admin Menu	126
	3.2.2	Selecting your language	127
	3.2.3	Add or change the password to connect to the Administrator menu	128
	3.2.4	Add or modify the username and password for remote connection	128
	3.2.5	Add or modify the site name	129
	3.2.6	Change units, vacuum/temperature color thresholds and synchronization speed	130
	3.2.7	Activating the mobile or desktop view on a mobile device	132
	3.2.8	Activate/deactivate the update feature	133
	3.2.9	Add, modify, or delete a pumping station	134
	3.2.10	Add, modify or delete a sector	135
	3.2.11	Add, modify or delete a Transmitter	136
	3.2.12	Address initialization of a Transmitter	138
	3.2.13	Activate vacuum level modulation at the Extractor via the Modulation Valve	140
	3.2.14	Renaming a line for a vacuum Transmitter	141
	3.2.15	Changing Color Thresholds for a Vacuum Level Sensor	143
	3.2.16	Assigning the vacuum level of an Extractor as the reference for a sector	143
	3.2.17	Correcting a vacuum level measurement Offset	146
	3.2.18	Setting up a Tank Level Sensor	146
	3.2.19	Configuration of a pressure sensor	150
	3.2.20	Add, modify, or delete the number of taps connected to a maple sap meter	152
	3.2.21	Import the settings from the base to the DATACER™ mobile	154
	3.2.22	Alarms and notifications	157
	3.2.23	Add or modify a web link	165
	3.2.24	Maps	166
	3.2.25	Save setting	170
	3.2.26	Data archiving	171

	3.2.27	Activate/deactivate connection to the Internet	172
	3.2.28	Recovering access to the account in case of forgotten identifiers	175
3.3	DA	TACER™ station interface	177
	3.3.1	Adding or modifying the automatic start and stop temperatures of the vacuum pump	177
	3.3.2	Adding or modifying the vacuum levels to be reached at the Extractor for autom modulation according to the outside temperature	
	3.3.3	Activating/deactivating the automatic opening of the Drain Valve according to the outside temperature	
	3.3.4	Activating/deactivating the automatic opening of the Drain Valve depending on pressure in the discharge pipe	
	3.3.5	Deactivating the water pump automatically if the Drain Valve is open	181
	3.3.6	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	182
	3.3.7	Line cleanup	183
	3.3.8	Last pumping of the day	184
	3.3.9	Selecting the type of pressure sensor	185
	3.3.10	Change the language and units	185
	3.3.11	Enable/disable automatic screen saving	186
3.4	Ga	teway	187
	3.4.1	Add, modify or delete a gateway on the interface	187
	3.4.2	Assign one or more sectors/pumping stations to a gateway on the interface	188
	3.4.3	Case of a gateway connected to a DATACER™ station via cable	189

3.1 Vocabulary and data structure

This synthesis will allow you to understand how to find your way in the DATACER™ interface architecture.

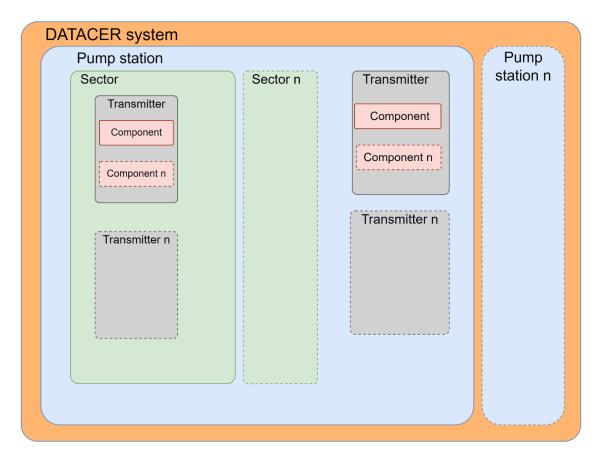


Figure 125 : Data architecture in the DATACER™ system

Pumping station. A pumping station can be attached to several sectors. A sector is attached to a pumping station. The pumping station is the building where you usually have your Extractors, Tanks, vacuum pump, water pump, and other equipment.

Sector. A sector is a set of lines in your sugar bush connected to only one extractor. On the other hand, an extractor can be the vacuum reference for one or more sectors linked to the same pumping station. A sector can only belong to one pumping station.

Transmitter. It is a box that always includes a radio, an antenna and the possibility of connecting sensors or other peripherals. A transmitter can be attached to a sector or a pumping station depending on its role. Vacuum transmitters are usually attached to a sector, while other transmitters are attached to a pumping station. A sector or pumping station can have multiple transmitters.

Component. A component is attached to a transmitter. A transmitter can have several components. A component can correspond to a sensor or a peripheral that is connected to a DATACER™ station.

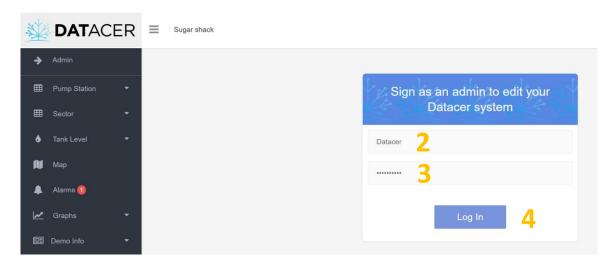
Example 1: An LV transmitter has 2 Components, a Tank level and a vacuum level.

Example 2: A DATACER™ station has the following components, a Modulation Valve, Water Pump Control, Vacuum Level and Pressure Sensor.

Measured value. This is the numerical data of a Component that is displayed in the DATACER™ base interface or the DATACER™ station interface.

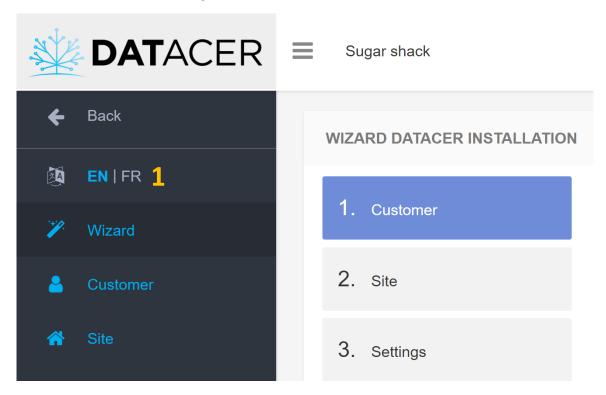
3.2 DATACER™ Interface

In this section you will find details of the settings available in the Admin menu of the DATACER™ interface.


Prerequisite: Turn on the DATACER™ base (see section 4.1.1 page 196).

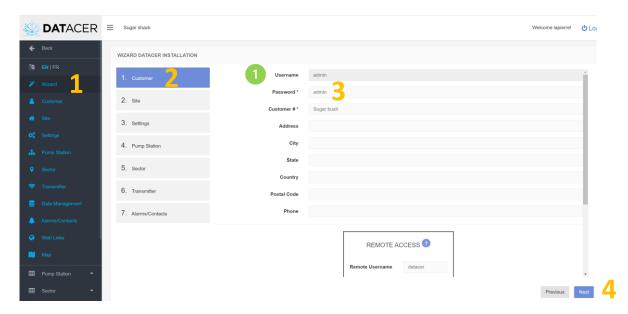
3.2.1 Accessing the Admin Menu

- Click on Admin.
- 2. Enter your User Name.
- 3. Enter your Password.
- 4. Click on Log In.



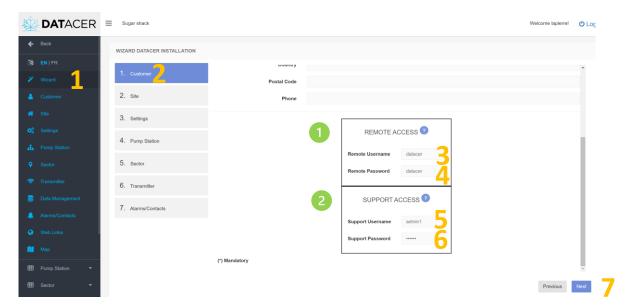
For security reasons, please change your admin password. Please refer to section 3.2.3 on page 128.

3.2.2 Selecting your language


1. Choose between EN for English or FR for French.

3.2.3 Add or change the password to connect to the Administrator menu

- 1. Click on Wizard.
- 2. Click on Customer.
- 3. Enter your password.
- 4. Click on next.



1 The username is set, you can only add or change the password.

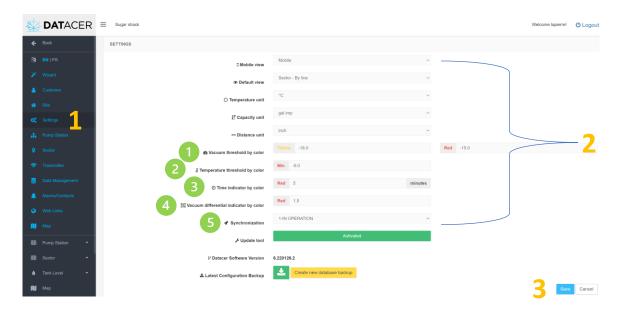
3.2.4 Add or modify the username and password for remote connection

- 1. Click on Wizard.
- 2. Click on Customer.
- 3. Enter your User Name.
- 4. Enter your Password.
- 5. Enter your User Name.
- 6. Enter your Password.
- 7. Click on Next.

- Your personal username and password to log in remotely on a cell phone, tablet or computer. We recommend that you keep these IDs to yourself.
- The username and password that you can give to one of your employees or a trusted person.

3.2.5 Add or modify the site name

- 1. Click on Site.
- 2. Enter the Name of your site.
- 3. Click on Save.



1 The name of the site is the name of your sugar bush.

3.2.6 Change units, vacuum/temperature color thresholds and synchronization speed

- 1. Click on Settings.
- 2. Enter the Mobile View, Units, Color Thresholds, and the Syncronization Speed.
- Click on Save.

If the vacuum level is less than or equal to -25 inHg (e.g. -26 inHg) then the box(es) affected by the Sensor(s) are displayed in green on the DATACER™ interface.

If the vacuum level is greater than -25 inHg (e.g. -24 inHg) then the box(es) affected by the Sensor(s) will be displayed in yellow on the DATACER™ interface.

If the vacuum level is greater than -15 inHg (e.g. -14 inHg) then the relevant box(es) will be displayed in red.

This note applies to all vacuum sensors of all lines and all Extractors.

If you wish to assign different thresholds for a particular line or Extractor, see section 3.2.15 page 143.

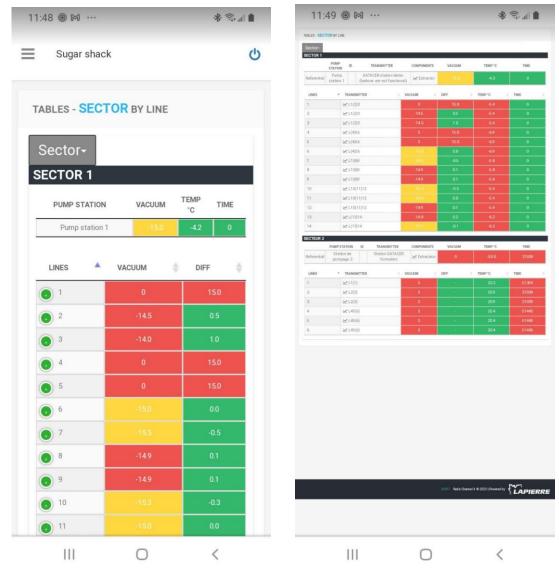
- If the temperature is below -3°C (26.6 F), the relevant box(es) in the operating pages will be displayed in red.
- If the data refresh time for a Transmitter is greater than 120 minutes, the relevant box(es) in the operating pages will be displayed in red.
- If the vacuum level difference between the Extractors and the end of lines in the same sector is greater than 5 inHg, the relevant box(es) in the operating pages will be displayed in red.

Synchronization mode. This allows the frequency of data communication in the system to be adjusted.

Basic software version lower than 9.000000.0

Mode	Use
Installation	Very frequent data communication between transmitters. This mode is recommended when starting up the system.
Operation	Normal communication frequency. This is the recommended mode for the entire sugaring season.
Performance	Normal communication frequency. This is the recommended mode for the entire sugaring season. It allows the communication of most networks to be optimized.

Basic software version greater than 9.000000.0

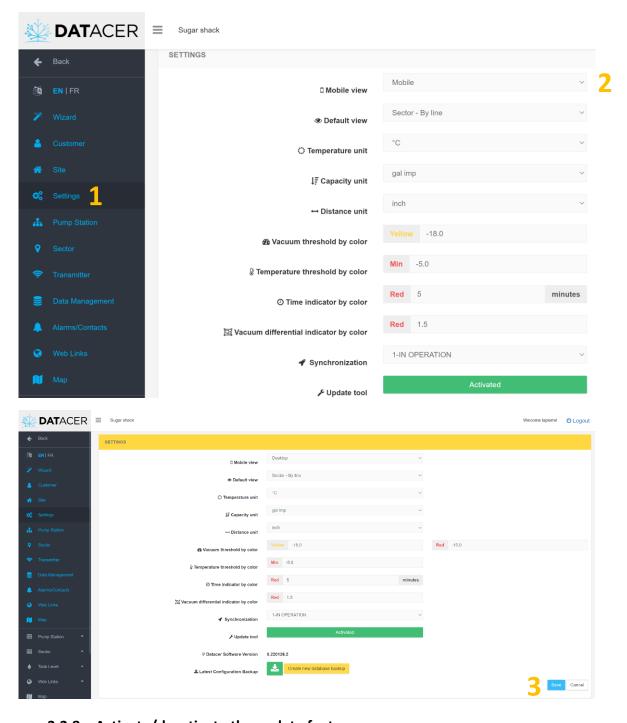

Mode	Use				
Installation	Very frequent data communication between transmitters. This mode is recommended when starting up the system.				
Operation	Normal communication frequency. This is the recommended mode for the entire sugaring season. It allows the communication of most networks to be optimized.				
Power saving	Longer communication frequency while minimizing the impact of transmitter refresh times. It allows the usage period of the transmitters to be almost doubled compared to "operation" mode. This mode is recommended for the entire sugaring season. It is particularly aimed at systems with refresh times < 1 min for all transmitters in "operation" mode.				
Sleep	Very long communication frequency. Transmitter refresh times are extended (> 15 min). This is the mode that consumes the least energy. This mode allows communication between transmitters to be maintained during the off season or when the producer wishes to minimize their battery consumption.				

"Sleep" synchronization will not be available if you have a DATACER™ station with a software version lower than 400. Please contact your distributor to receive an update for your DATACER™ station via Pickit.

"Installation" mode is automatically replaced at midnight with the previous communication mode.

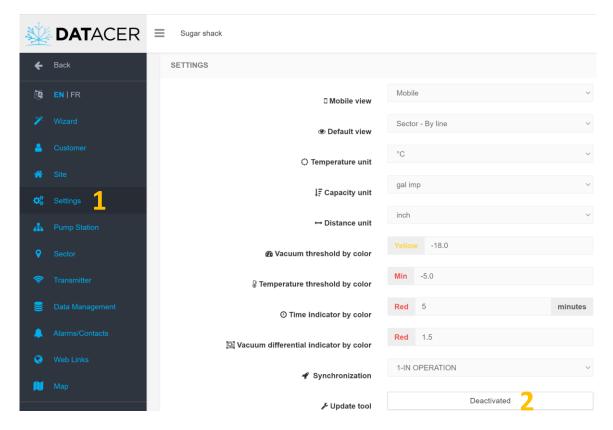
3.2.7 Activating the mobile or desktop view on a mobile device

Mobile view


Desktop view

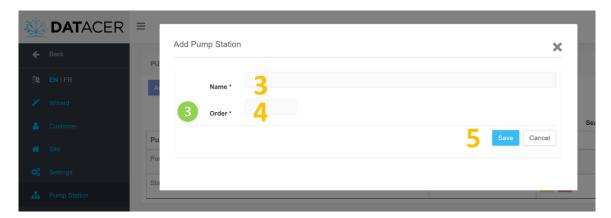
In Desktop mode it is possible to zoom in/out.

- 1. Click on "Settings"
- 2. Choose Mobile or Desktop mode
- 3. Click on "Save"



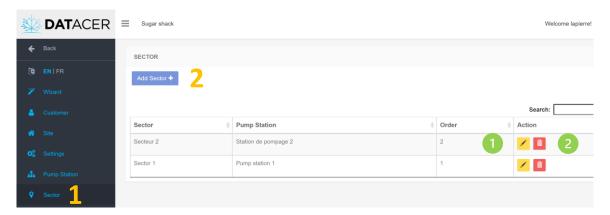
3.2.8 Activate/deactivate the update feature

- 1. Click on Settings.
- 2. Make sure that the update activation button is green and that the "Activated" notification appears on it. If not, click on the grey "Disabled" button to turn it green.


3.2.9 Add, modify, or delete a pumping station

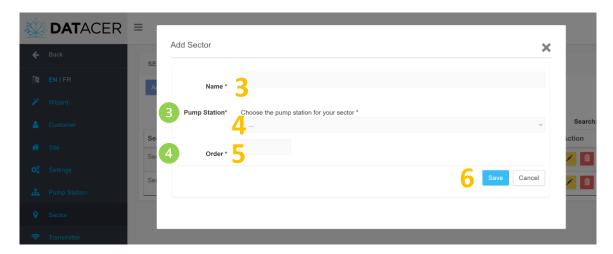
- 1. Click on Pump station.
- 2. Click on Add Pump station.
- 3. Enter the Name of the Pump station.
- 4. Enter the Order.
- 5. Click on Save.

- If you want to change the name of an existing pumping station, click on the yellow button of the corresponding station.
- If you wish to delete an existing pumping station, click on the red button of the corresponding station.



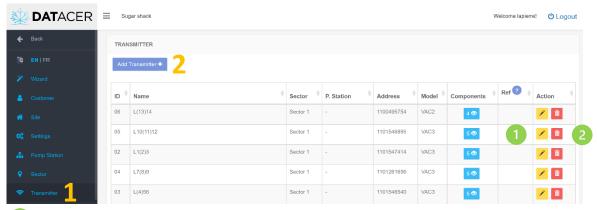
3 It indicates the order in which the pumping station is displayed in the list.

3.2.10 Add, modify or delete a sector


- 1. Click on Sector.
- Click on Add Sector.
- 3. Enter the Sector Name.
- 4. Select which Pump Station the Sector is associated to.
- 5. Enter the order.
- 6. Click on Save.

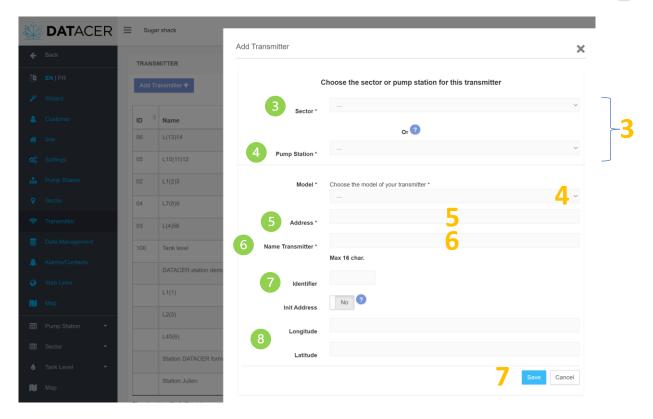
If you want to change the name of an existing sector, click on the yellow button of the corresponding sector.

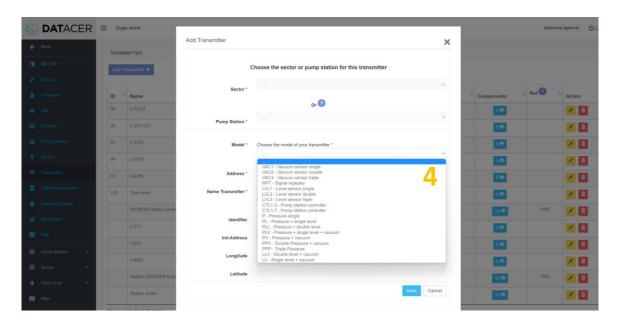
If you want to delete an existing sector, click on the red button of the corresponding sector.



- The station must have been previously added to the list. To add a pumping station, see section 3.2.9 page 134.
- 4 It indicates the order in which the sector is displayed in the list.

3.2.11 Add, modify or delete a Transmitter


- 1. Click on Transmitter.
- 2. Click on Add Transmitter.
- 3. Select the Sector or Pump Station to which the Transmitter should be associated to.
- 4. Enter the Model from the list.
- 5. Enter the Address.
- 6. Enter the Transmitter Name.
- 7. Click on Save



If you wish to change the name or other information for an existing Transmitter, click on the yellow button of the corresponding Transmitter.

If you wish to delete an existing Transmitter, click on the red button of the corresponding Transmitter.

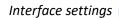
The sector must have been previously added to the list. See section 3.2.10 page 135 to add a sector.

The pumping station must have been previously added to the list. See section 3.2.9 page 134 to add a station.

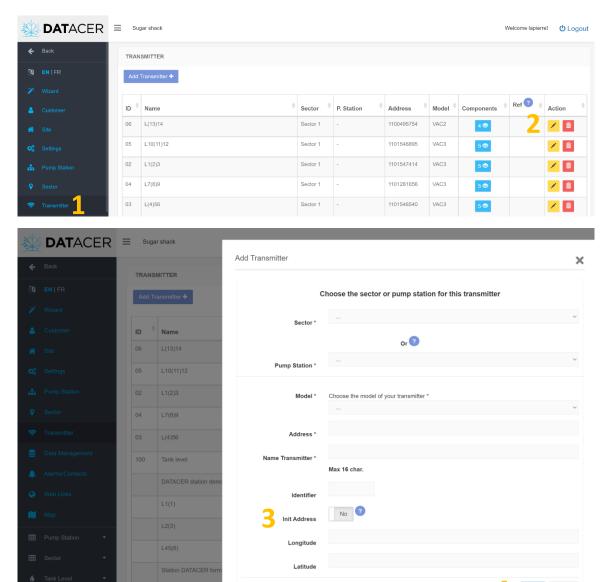
The address corresponds to the 10 digits on the barcode label on the inside and outside of your Transmitter. Here is an example below.

Figure 126: Transmitter address

Name the Transmitter using your own logic. For example, for a triple vacuum Transmitter, you could name it 12(3) because this Transmitter measures the vacuum on lines 1, 2 and 3. The 3 in brackets indicates that the Transmitter is positioned near line 3.

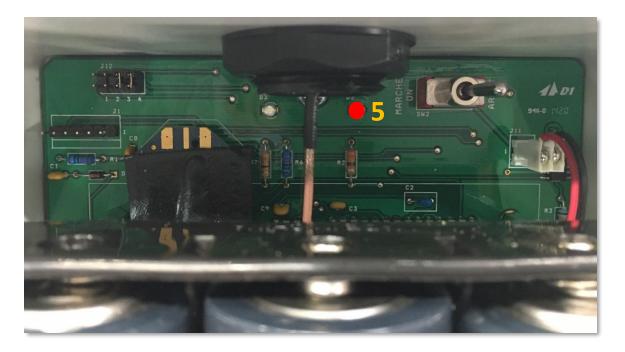

- Allows you to assign a unique identifier if you wish. This is not mandatory.
- 8 Allows you to record the GPS coordinates of the Transmitter. This is not mandatory.

3.2.12 Address initialization of a Transmitter

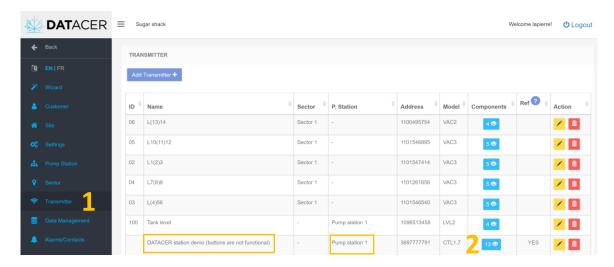

Address initialization of a Transmitter is used to reset the communication between the base and the related radio transmitter. The address initialization must be performed after adding a new Transmitter or after changing its address.

- 1. Click on Transmitter, you will access the list of Transmitters.
- 2. Click on the yellow button of the Transmitter for which you would like to perform an address initialization.
- 3. Click on the Address Initialization button "No" Init Adresse

 . The button then changes to "Yes" Init Adresse
 . The address initialization has been sent.
- 4. Click on Save.



5. A long red flash followed by two short flashes should appear on the transmitter LED channel. This indicates that initialization has been successful.

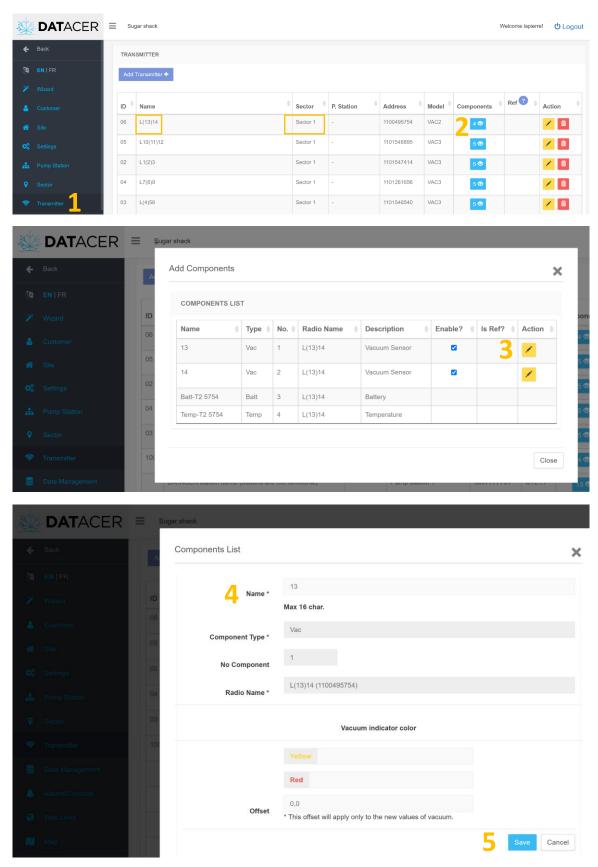


3.2.13 Activate vacuum level modulation at the Extractor via the Modulation Valve

In the example, the screen shows that the Modulation Valve is on an Extractor of the pumping station "Pump station 1" and that it is connected to the DATACER™ station "DATACER demo (buttons are not functional)"

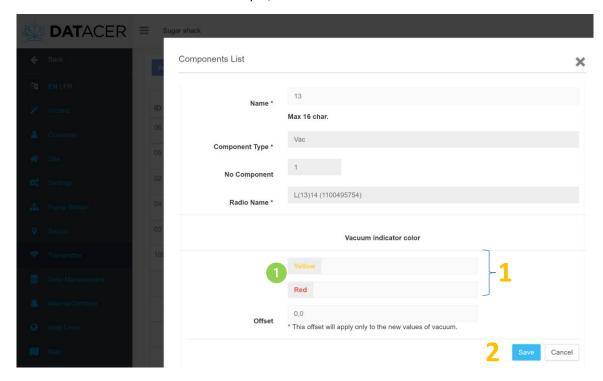
- 1. Click on Transmitter.
- 2. Click on the blue button
- 3. Check the box to activate or disable the Component.
- 4. Click on Close.

Name	Type 🛊	No.	Radio Name	Description	Enable?	Is Ref?≑	Action
Départ/Arrêt p	VPRC	1	DATACER station	Vac. Pump (ON/OFF)			1
Prs1-Passerelle	Prs	2	DATACER station	Pressure Sensor			1
Extractor	Vac	3	DATACER station	Vacuum Sensor		Sector 1	1
% drive	VPSC	4	DATACER station	Vac. Pump Speed (VFD)			1
% opening	VLV	5	DATACER station	Modulating Valve	3 🛮		1
TMPX-Passerelle	TMPX	6	DATACER station	Outside Temperature			1
Trappe à humidi	HUM	7	DATACER station	Humidity Trap			1
SPS-Passerelle S	SPS	8	DATACER station	Selector AUTO/OFF/MAN			1
VLVDR-Passerelle	VLVDR	9	DATACER station	Drain Valve			1
Lev2-Passerelle	Lev	10	DATACER station	Level Sensor			1
Temp-Passerelle	Temp	11	DATACER station	Temperature			
SAP-Passerelle S	SAP	12	DATACER station	Sap Pump Control			1
Fonction modulat	MOD	13	DATACER station	Vac Modulation (ON/OFF)			. Pr


3.2.14 Renaming a line for a vacuum Transmitter

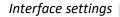
In the example, we change the name of line position 1 on the double vacuum Transmitter named "L(13)14" belonging to the "Sector 1" sector.

- 1. Click on Transmitter.
- 2. Click on the blue button of the vacuum Transmitter in question.
- 3. Click on the yellow button .
- 4. Modify the Name of the line.
- 5. Click on Save.

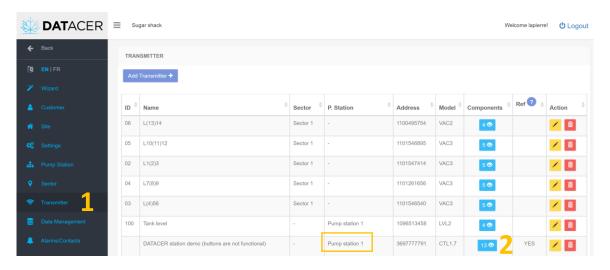


3.2.15 Changing Color Thresholds for a Vacuum Level Sensor

Start the same procedure as the previous section page 141 and fill in the desired threshold values for this vacuum measurement after step 4, then click on Save.

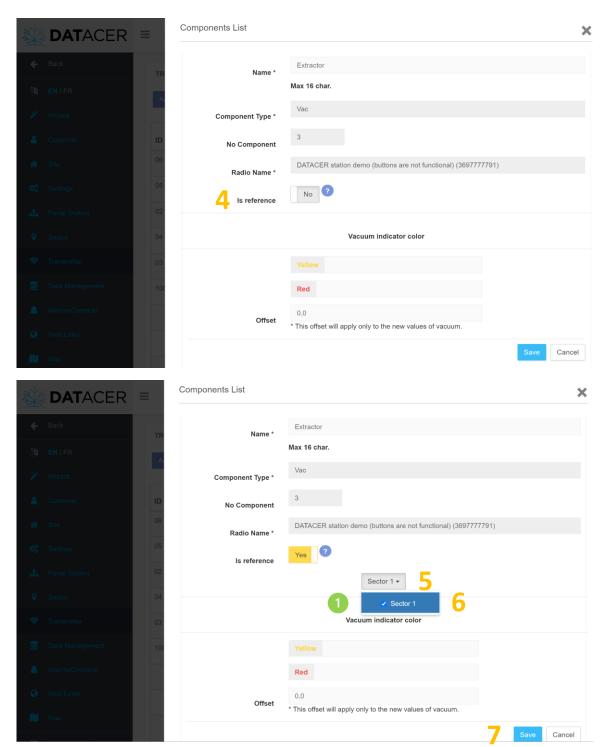


If the vacuum level is higher than the values determined in inHg for the related vacuum Sensor, then the relevant box(es) in the operating pages will be displayed in yellow or red depending on the current vacuum level.


3.2.16 Assigning the vacuum level of an Extractor as the reference for a sector

In the following example, we want to assign the vacuum level of the Extractor "Extractor", contained in the pumping station "Pump station 1", as the reference for sector 1.

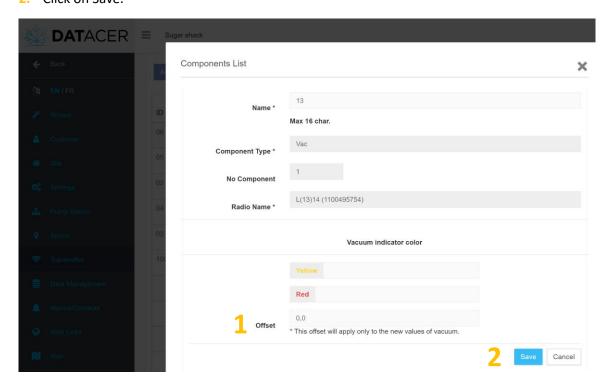
- 1. Click on Transmitter.
- 2. Click on the blue button for the Transmitter that measures the vacuum at the related Extractor.
- 3. Click on the yellow button
- 4. Click on the reference button Est "No" Est référence . It then switches to "Yes"
- 5. Click on the drop-down list.
- 6. Check the sector or sectors that are supplied by the Extractor in question.
- Click on Save.



COMPONENTS LIST Enable? Is Ref? Name Type 🛊 No. Radio Name Description Action Départ/Arrêt p **VPRC** 1 DATACER station Vac. Pump (ON/OFF) \checkmark Prs1-Passerelle Prs 2 DATACER station Pressure Sensor Extractor Vac 3 DATACER station Vacuum Sensor **V** Sector 1 **VPSC** DATACER station % drive 4 Vac. Pump Speed (VFD) **V** VLV DATACER station 5 Modulating Valve ✓ % opening TMPX-Passerelle **TMPX** 6 DATACER station Outside Temperature Trappe à humidi HUM 7 DATACER station **Humidity Trap** \checkmark SPS-Passerelle S SPS DATACER station Selector AUTO/OFF/MAN 8 VLVDR-Passerelle **VLVDR** 9 DATACER station Drain Valve Lev2-Passerelle DATACER station Level Sensor Lev 10 DATACER station Temp-Passerelle Temp 11 Temperature SAP-Passerelle S SAP 12 DATACER station Sap Pump Control Fonction modulat MOD 13 DATACER station Vac Modulation (ON/OFF) \checkmark

Close

To be able to display the sector list linked to the extractor, you must have previously indicated which sector(s) is(are) linked to that transmitter the pumping station containing the Transmitter - measuring the vacuum of the Extractor - is itself linked to one or more sectors. To assign a sector to a pumping station, see section 3.2.10 page 135.

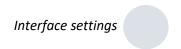

3.2.17 Correcting a vacuum level measurement Offset

The purpose of this function is to correct vacuum level differences resulting from various factors such as the difference in altitude between the Extractor and the end of the line. It does not allow to correct the error margin of the Sensor which, at the factory, is +/- 0,3 inHg compared to the measured value.

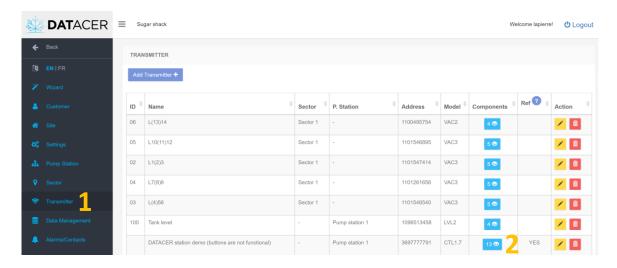
This feature should be used with caution. If you don't use it properly, then you could be masking certain defects in your system such as leaks, pressure drops in the system, undersized pipes, staking defects and others. We recommend that you discuss this with your LAPIERRE consultant to determine if this feature can be beneficial in your situation and what method to follow.

Carry out the same steps as in section 3.2.14 page 141 to step 3.

- Add or subtract a vacuum level value in inHg in the Offset box to correct the Sensor measurement.
- 2. Click on Save.



3.2.18 Setting up a Tank Level Sensor


In the example, we set up the Tank Level Sensor of Transmitter "DATACER™ station (buttons are not functional)" installed above the Tank "Lev2-passerelle".

- 1. Click on Transmitter.
- 2. Click on the blue button for the Transmitter that measures the Tank level in question.

- 3. Click on the yellow button
- 4. Enter the total volume of the Basin and the two lengths A and B in inches according to the diagram (see green note 1 below).
- 5. Enter the High level threshold in percent (%).
- 6. Click on Save.

VLVDR-Passerelle

Lev2-Passerelle

Temp-Passerelle
SAP-Passerelle S

Fonction modulat

VLVDR

Lev

Temp

SAP

MOD

9

10

11

12

13

DATACER station

DATACER station

DATACER station

DATACER station

DATACER station

V

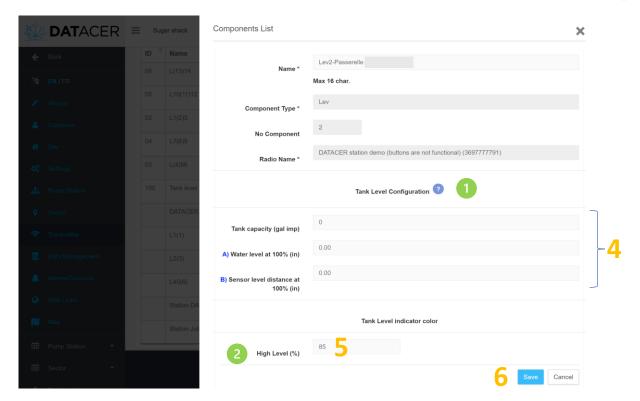
COMPONENTS LIST Name Type 🛊 No. Radio Name Description Enable? Is Ref? Action Vac. Pump (ON/OFF) Départ/Arrêt p **VPRC** 1 **DATACER** station \checkmark Prs1-Passerelle DATACER station Pressure Sensor Prs 2 Extractor Vac 3 DATACER station Vacuum Sensor \checkmark Sector 1 % drive **VPSC** 4 DATACER station Vac. Pump Speed (VFD) \checkmark VLV 5 DATACER station Modulating Valve % opening \checkmark TMPX-Passerelle TMPX 6 DATACER station Outside Temperature 7 HUM Trappe à humidi DATACER station Humidity Trap **V** SPS-Passerelle S SPS DATACER station Selector AUTO/OFF/MAN 8

Drain Valve

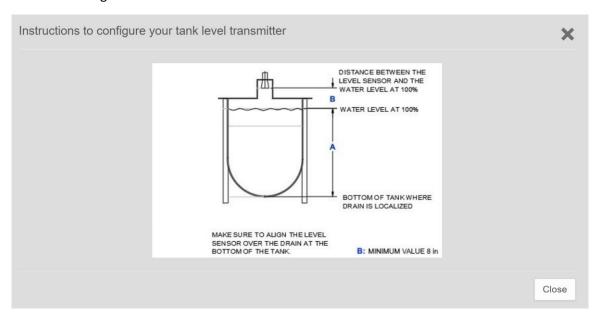
Level Sensor

Temperature

Sap Pump Control

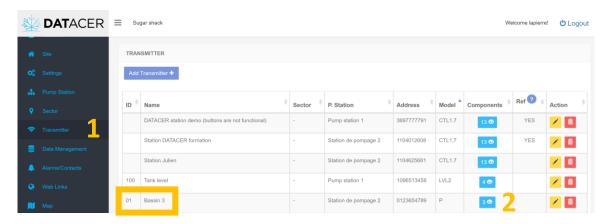

Vac Modulation (ON/OFF)

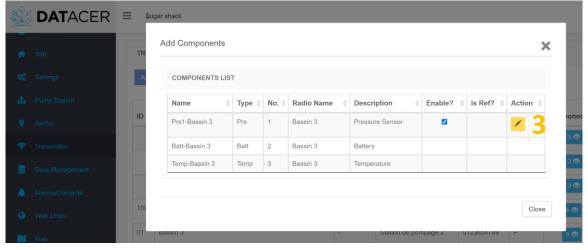
✓


 \checkmark

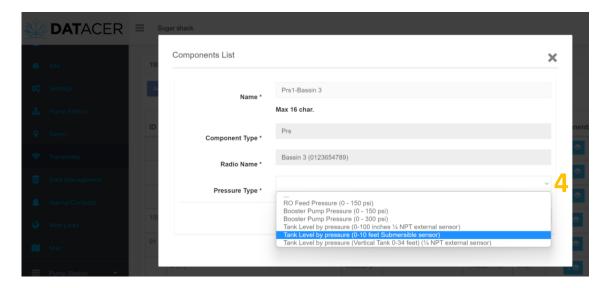
Close

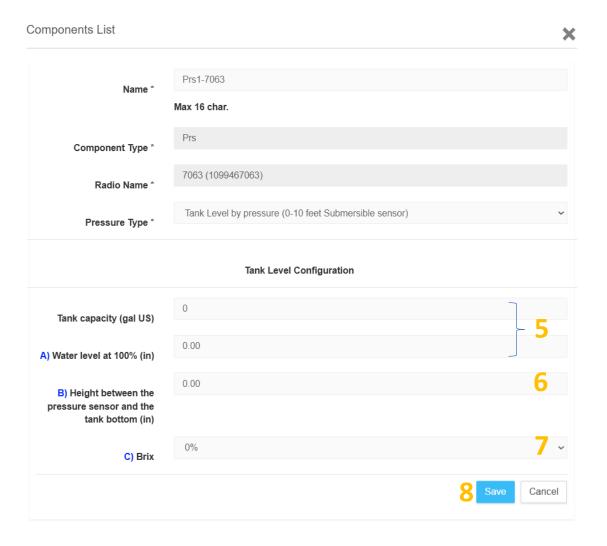
To better understand the A and B distances to measure you can click on the question mark to view the diagram below.

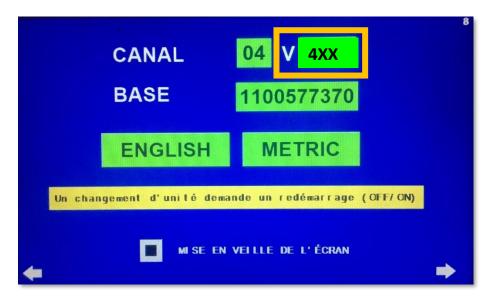

If the level is greater than or equal to the threshold, then the boxes corresponding to the measurement of this Tank level will be displayed in red in the DATACER™ interface.



3.2.19 Configuration of a pressure sensor


In the following example, we set up a 0-100 inch pressure sensor from the "Bassin 3" Transmitter installed on the "Prs1-Bassin 3" Tank.

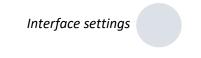

- 1. Click on Transmitter.
- 2. Click on the blue button for the Pressure Transmitter that measures the level of the Tank in question.
- 3. Click on the yellow button
- 4. Select a Pressure Sensor Type to measure a level.
- 5. Enter the total volume of the Tank and the A length in inches.
- 6. Enter the High level threshold in percent (%).
- 7. Enter the liquid brix level
- 8. Click on Save.

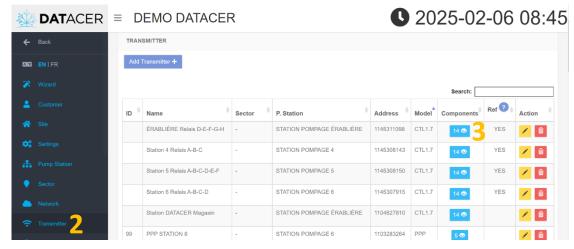


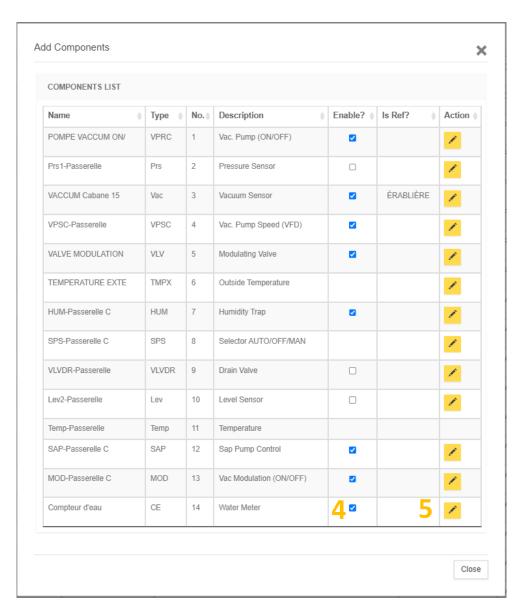
3.2.20 Add, modify, or delete the number of taps connected to a maple sap meter

Prerequisites:

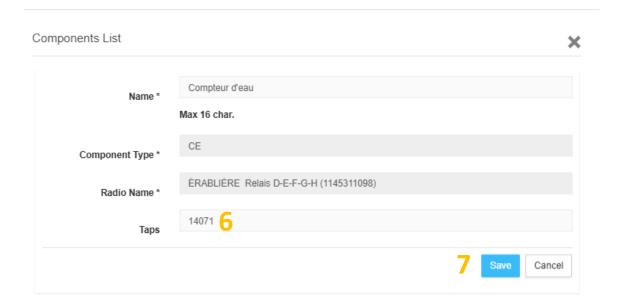
 Ensure that the software version of the DATACER™ station is greater than or equal to 04XX.




- Ensure that the software version of the base is greater than 8 (see section 3.2.6, page 130). If this is not the case, please perform an internet update of your DATACER™ base (see section 4.13, page 289 of the DATACER™ manual).
- Ensure that the DATACER™ base has been migrated to the new server. The remote login address must be **daXXXX.base.datacer.online.** If the migration has not been completed, please call Lapierre Equipment customer service at 819 548-5454.

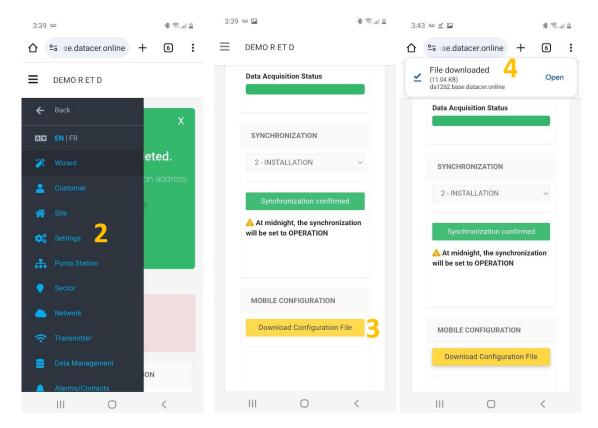

Specify the number of taps connected to the maple sap meter using the following path:

- 1. Admin
- 2. Transmitters
- 3. Click the blue eye 14♥ on the DATACER™ station connected to the maple sap meter
- Activate the maple sap meter component
- 5. Click the yellow pencil
- 6. Indicate the number of taps.
- Save



If you have multiple maple sap meters in your pumping station, we recommend creating one pumping station per maple sap meter in the DATACER™ interface.

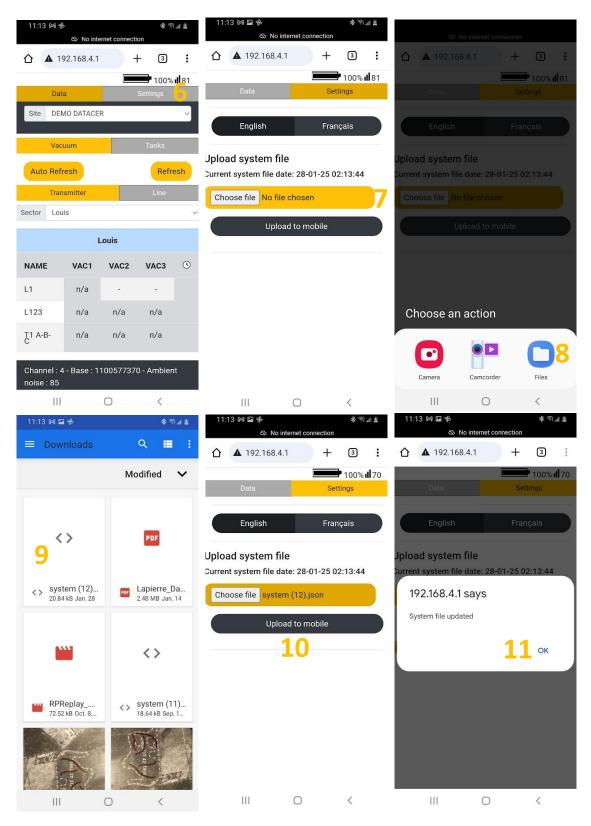
3.2.21 Import the settings from the base to the DATACER™ mobile


Prerequisites:

- Start up the DATACER™ base (see section 4.1.1, page 196).
- Ensure that the software version of the base is greater than 8 (see section 3.2.6, page 130). If this is not the case, please perform an internet update of your DATACER™ base (see section 4.13, page 289).
- Ensure that the DATACER™ base has been migrated to the new server. The remote login address must be **daXXXX.base.datacer.online.** If the migration has not been completed, please call Lapierre Equipment customer service at 819 548-5454.
- Start up the DATACER™ mobile (see section 4.6.9.1, page 250).

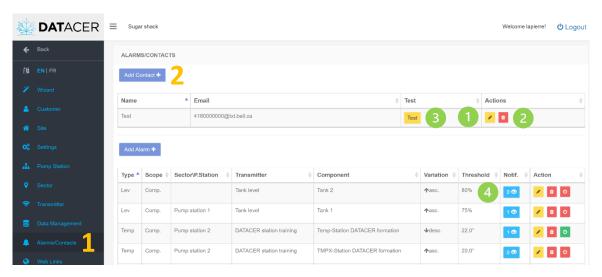
On the DATACER™ interface on the telephone:

- 8. Log in to the DATACER™ interface from your telephone (see section 4.4.5 page 232).
- Click "Admin," enter your user name and administrator password, then click "Settings."
- 10. Click "Download configuration file."
- 11. This message indicates that the file has successfully been downloaded.



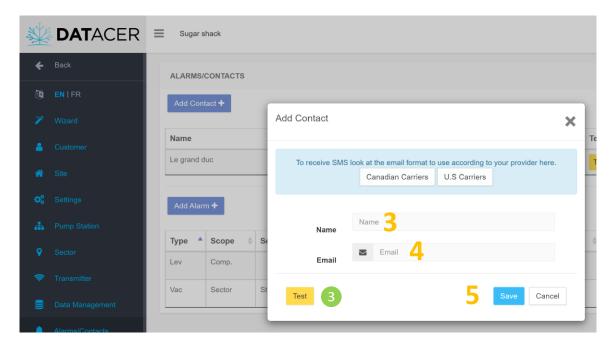
On the DATACER™ mobile interface on the telephone:

- 12. Open the DATACER™ mobile interface on your telephone (see section 4.6.9.1, page 250
- 13. Click "Settings."
- 14. Click "Choose a file."
- **15.** Choose the folder to which your file was downloaded in step 3.
- 16. Select the most recent file in .json format.
- 17. Click "Download to mobile."
- 18. A message indicates that the settings were successfully imported to the mobile. Click "OK."



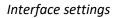
Perform a new import into the mobile each time the settings are modified in the DATACER™ base. That way, the system view via the mobile on your telephone will be up to date. Example: after adding a sector or transmitter, editing the name of a line, etc.

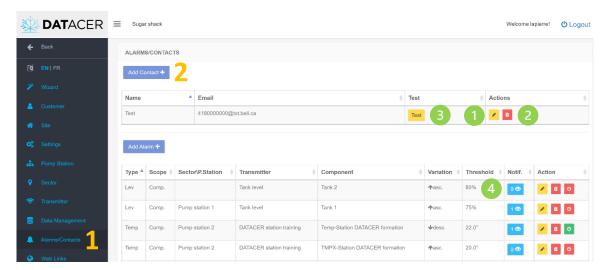
3.2.22 Alarms and notifications


3.2.22.1 Add, edit or delete a contact for email notifications

- Click on Alarms/Contacts.
- 2. Click on Add Contact.
- 3. Enter the Name of the contact.
- 4. Enter the Email of the contact who should receive the notification.
- Click on Save.

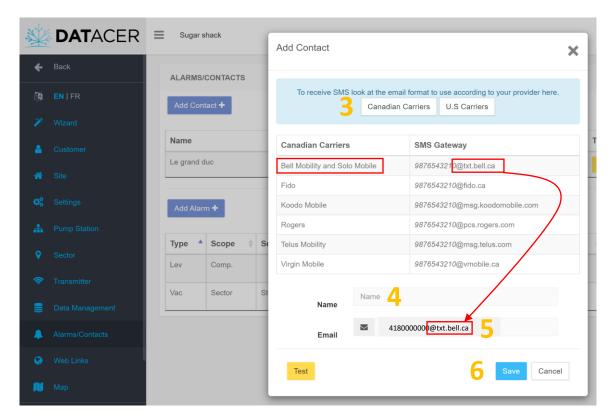
- If you wish to modify an existing contact, click on the yellow button of the corresponding contact.
- If you want to delete an existing contact, click on the red button of the corresponding contact.
- If you want to send a test notification, you can click on this yellow button
- The blue button allows you to view the list of contacts linked to the alarm for sending SMS or email notifications.



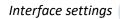

If you want to simultaneously receive an email and an SMS for the same alarm you must create two contacts, one with your email and the other with your cell phone number. You must attach them to the same alarm.

3.2.22.2 Add, modify or delete a contact for sending SMS notifications

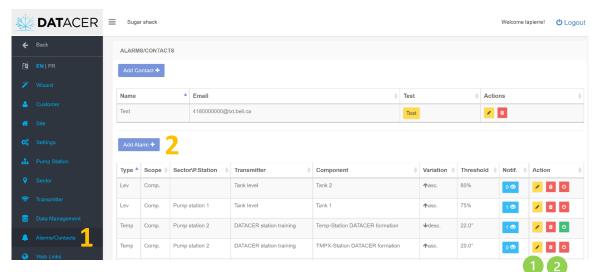
- 1. Click on Alarms/Contacts.
- 2. Click on Add Contact.
- 3. Locate your cellular network provider in the list by clicking on Provider Canada or Providers U.S.
- 4. Enter the Name of the contact.
- 5. In the Email field, enter the 10-digit cell phone number of the contact, followed by the "@", and the rest of the address corresponding to the cell phone provider of the contact in question. In our example the number is 4180000000.
- 6. Click on Save.



- If you wish to modify an existing contact, click on the yellow button of the corresponding contact.
- If you want to delete an existing contact, click on the red button of the corresponding contact.
- If you want to send a test notification, you can click on this yellow button Test.
- The blue button allows you to view the list of contacts linked to the alarm for sending SMS or email notifications.

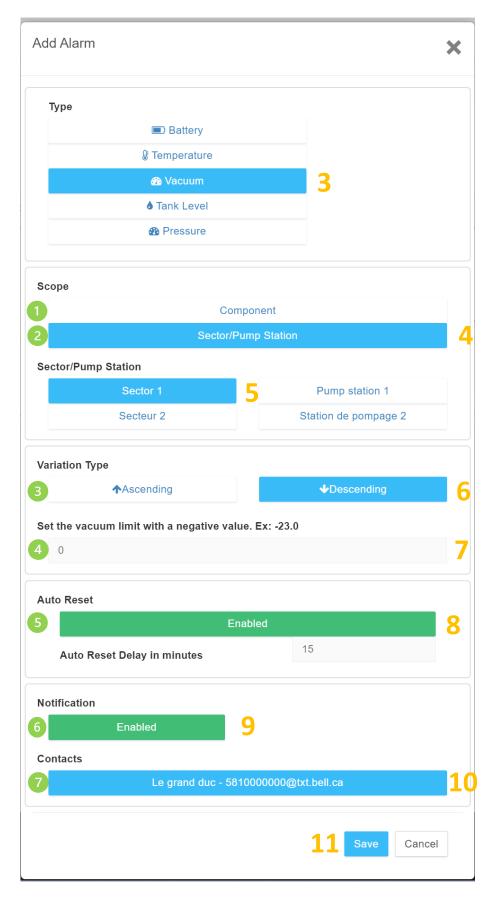


If you want to simultaneously receive an email and a SMS for the same alarm you have to create two contacts, one with your email and the other with your cell phone number. You must attach them to the same alarm.

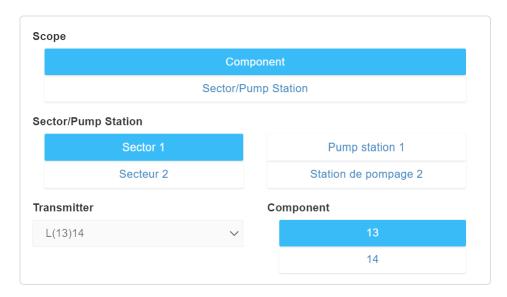

3.2.22.3 Add, modify or delete an alarm

In our example, we add a descending vacuum level alarm for sector "Sector 1". The alarm is triggered if one of the vacuum levels in the sector is below -23 inHg, for example -22 inHg. The software does not take the sign into account.

- 1. Click on Alarms/Contacts.
- 2. Click on Add alarm.
- 3. Choose the Type of alarm.
- Choose the scope.
- 5. Select the relevant Sector or Component.
- Choose the Type of variation.
- 7. Enter the Vacuum Limit, i.e. the triggering threshold.
- 8. Enable or disable Auto Reset.
- 9. Enable or disable sending Notification (email/SMS).
- 10. Select or deselect the Contacts for sending SMS and/or emails.
- 11. Click on Save.



- If you want to modify an existing alarm, click on the yellow button of the corresponding alarm.
- If you want to delete an existing alarm, click on the red button of the corresponding alarm.



Component Scope

This is an alarm for a particular Transmitter Component. The alarm is triggered if the value measured by a Transmitter's Sensor exceeds the set threshold.

For example, an alarm for the "13" line of the "L(13)14" transmitter located in the "Sector 1", whose vacuum drops below the threshold of -23inHg.

2

Sector or pumping station scope

This is an alarm per sector or per pumping station. The alarm is triggered if any of the values measured in a sector or pumping station fall below the set threshold. For example, an alarm indicates the first line of the test sector has dropped below -23 inHg.

3

Type of variation

A rising alarm is triggered if the measured value is greater than or equal to the threshold. A falling alarm is triggered if the measured value is less than or equal to the threshold.

Threshold

It is the absolute value that will be compared to the measured value to determine if an alarm should be sent. An absolute value does not take the sign into account.

When you enter -23 inHg the software considers 23 inHg. So if the measured vacuum is -22 inHg and you have chosen "downward variation", an alarm will be sent because 22 inHg is lower than 23 inHg.

Automatic reset

This function allows you to automatically reset the alarm when it has been triggered after a certain time without having to intervene in the system. The alarm is no longer active until the reset time in minutes is over.

For example: you want to receive an alarm every time your Tank level drops below 70%. The timer allows time for the Tank to refill and exceed the alarm threshold. This alarm can then indicate that the water pump has started and the Tank is now emptying.

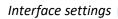
Notification (email/SMS)

This function allows you to activate or deactivate the sending of SMS or emails following the triggering of an alarm.

Contact

Represents the list of the contact(s) added for this alarm (see section 3.2.22.1 page 157 and section 3.2.22.2 page 158).

3.2.22.4 Enable/disable SMS /email notifications for an alarm

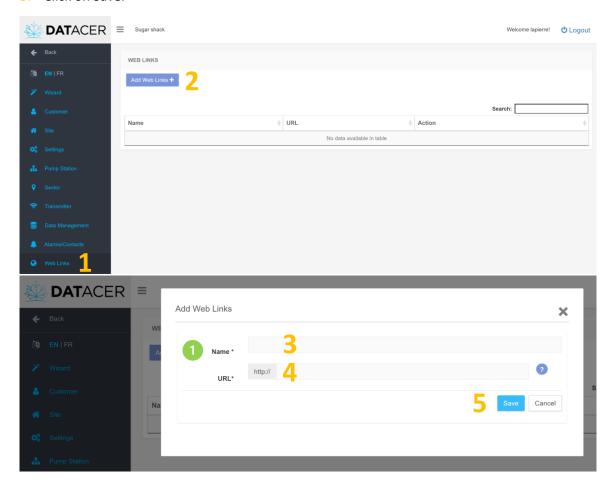

Refer to step 9 in section 3.2.22.3 on page 160.

3.2.22.5 Changing a contact for an alarm


Refer to step 10 in section 3.2.22.3 on page 160.

3.2.22.6 Enable or disable an alarm

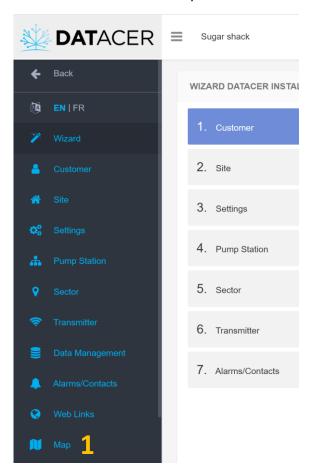
- Click on Alarms/Contacts.
- 2. Click on the enable or activation button.
 - The green button indicates that the alarm is activated or enabled.
 - The red button indicates that the alarm is deactivated or disabled.



3.2.23 Add or modify a web link

- 1. Click on Web Links.
- 2. Click on Add Web Links.
- 3. Enter the Name of the site.
- 4. Enter the URL, or the address.
- 5. Click on Save.

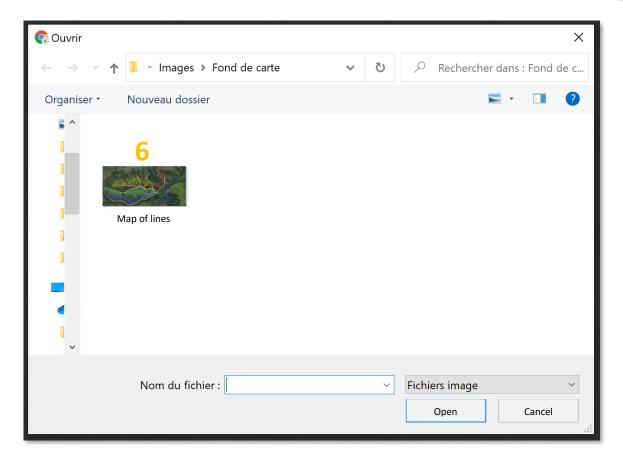
The name is displayed in the main user menu.

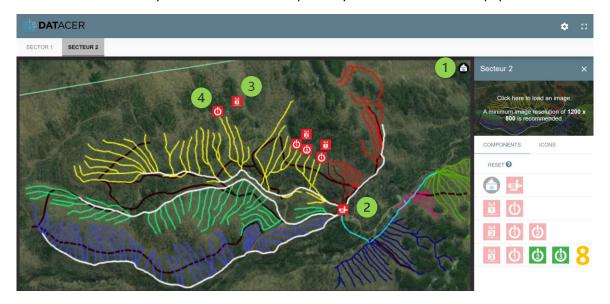

3.2.24 Maps

3.2.24.1 Add or modify a map

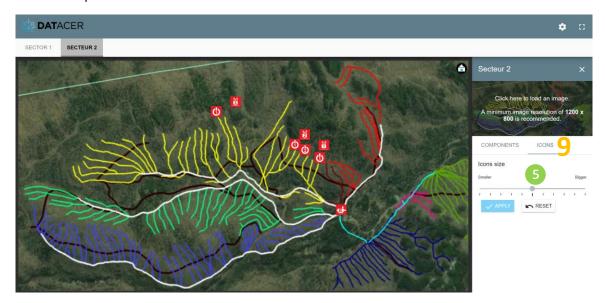
- Click on Maps.
- 2. Select the sector by clicking on the corresponding tab at the top of the page.
- 3. Click on the menu icon

- Click on the edit sector button
- 5. Click in the grey area to import a background map.
- 6. Select a background map from your files (maximum 2 Mo).
- 7. Click on Open.
- 8. Drag and drop the icons from the left to their precise location on the map. The icons turn grey when placed on the map.
- 9. Adjust the size of the icons if you wish.
- 10. Repeat from step 2 to map another area.
- 11. Close the windows when you have finished setting up your sector or area maps.



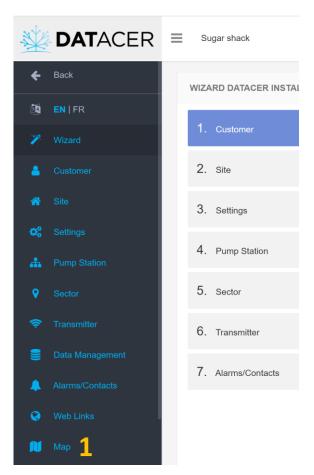


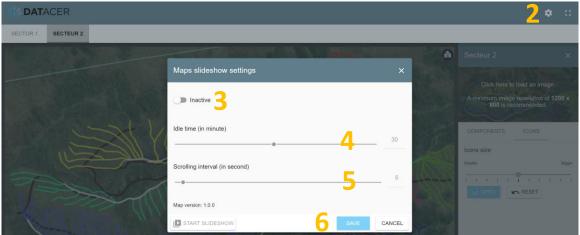
*


You can insert a photo of a hand-drawn plan of your lines on a sheet of paper.

- Corresponds to the sector.
- Corresponds to the pumping station.

- Corresponds to a Transmitter.
- 4 Corresponds to a vacuum level sensor.


5 You can enlarge or reduce the size of the icons to fit your map background.



3.2.24.2 Enabling/Disabling Automatic Area or Sector Map Slideshow

- 1. Click on Maps.
- 2. Click on the slideshow button
- 3. Activate the slideshow.
- 4. Enter the Inactivity time in minutes, i.e. the time without movement, click or use of the keyboard after which the slideshow will automatically start.
- 5. Enter the Scroll Interval in seconds that a sector or an area card is visible before.
- 6. Click on Save.

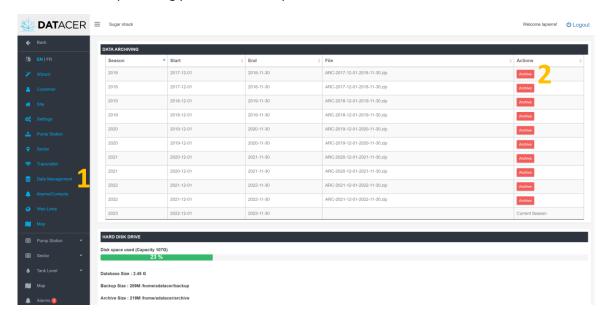
3.2.25 Save setting

We recommend that you make a manual backup of your settings once you have completed the initial setup of your system or when you have just made changes.

- 1. Click on Settings.
- 2. Click on Create a new backup.

This action saves all the settings of the DATACER™ base, in the same way that the automatic backup saves them every night at midnight (0h00).

The green button is used to export a backup of your DATACER™ base settings in .sql format. This type of backup can allow the DATACER™ support team to restore your database settings on a new DATACER™ base


The backups of the last three days are kept on this USB key.

3.2.26 Data archiving

1. Click on "Data Management" and view the NUC disk space (base computer)

2. To save space, you can click on the red "Archive" button(s). This will extract the data, make a copy of the settings and copy everything to the backup USB stick. To find out where it is located, see preceding point in the previous section.

You can archive one season at a time. An "Archive" button is available for each season. In the software a season starts on 1/12 and ends on 30/11.

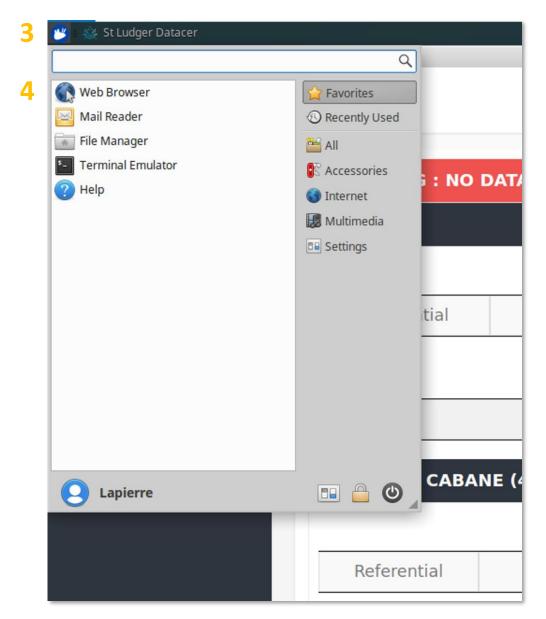
You can copy/paste the folders stored on the key to another storage space of your choice. For example: a computer, hard drive or other.

Archiving becomes necessary if more than 75% of the disk space of the DATACER™ base is taken.

3.2.27 Activate/deactivate connection to the Internet

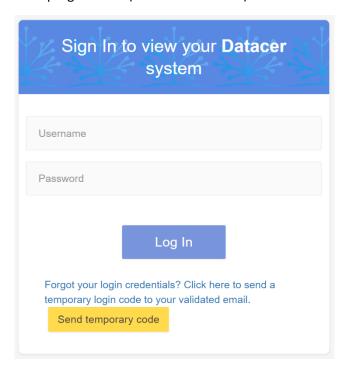
Prerequisites: Be connected locally to the DATACER™ base (see section 4.4.1 page 222)

- 1. Click on the button with two white arrows in opposite directions located at the top right of your screen.
- 2. Make sure that the white check mark is in front of the "Enable Networking" label. If not, click on "Enable Networking" to activate connection to the Internet.



To check if the DATACER™ base is connected to the Internet you can try to open a web browser page and perform a search. If the search is successful then it confirms that the database is connected to the Internet.

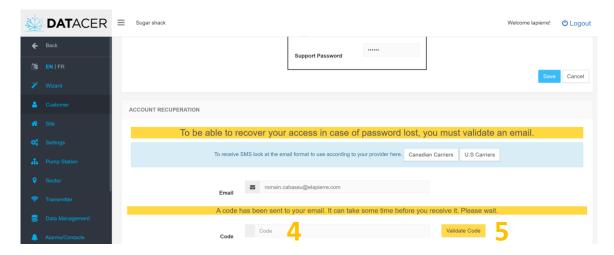
- 3. To open a web browser from the interface, click on the blue and white icon at the top left of your screen.
- 4. Click on "Web browser".



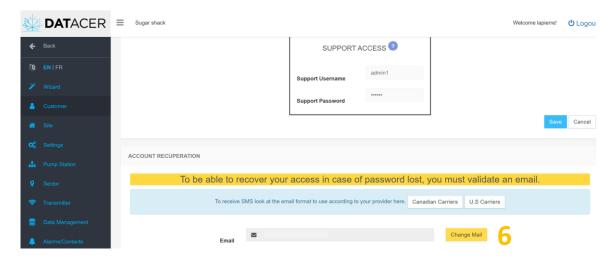
5. Enter the keywords of your search and press the "Enter" key on your keyboard.

3.2.28 Recovering access to the account in case of forgotten identifiers

If you forget your login details, you will still be able to access your DATACER™.online account using a temporary code that you will receive either by email or by SMS, depending on what you have programmed (see method below).


Prerequisites: Go to Admin mode.

- 1. Click on "Customer" in the left menu.
- Enter your email or cell phone number on which you would like to receive a verification code. Both the email and cell phone number must be valid. Same method as described in section 3.2.20 page 152.
- 3. Click on "Send code".

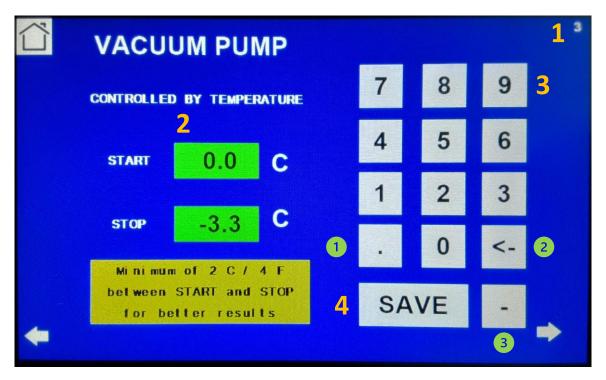

- 4. Enter the code you just received by email or SMS.
- 5. Click on "Validate code".

6. If you wish to change your email or cell phone number, click on "Change Email".

The software will send you a new code to enter. Please return to step 3 above.

3.3 DATACER™ station interface

Prerequisites: Turn on the DATACER™ station (see section 4.1.3 page 202).


In this section you will find details of the settings available in the interface of the DATACER™ station.

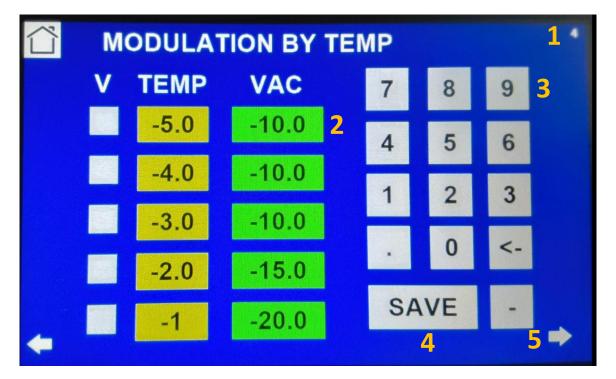
The automations based on temperature values (start/stop of the vacuum pump, opening/closing of the drain valve and modulation of the vacuum) use the outdoor temperature value read by the DATACER™ station as reference.

3.3.1 Adding or modifying the automatic start and stop temperatures of the vacuum pump

- 1. Go to page 3 of the interface.
- 2. Click in the green boxes to add or modify values.
- 3. Enter your desired temperature values via the keyboard on the right.
- 4. Click on Save.

- 1 Comma.
- Clear the last values entered.
- Negative sign.

The vacuum pump starts when the outdoor temperature is above the "Start" threshold. The pump stops when the temperature is below the "Stop" threshold.


3.3.2 Adding or modifying the vacuum levels to be reached at the Extractor for automatic modulation according to the outside temperature

- 1. Go to page 4 of the interface.
- 2. Click in a green box to change the vacuum value to be reached according to the temperature indicated on the same line to its left.
- 3. Enter the desired vacuum level value via the keyboard on the right.

The vacuum values entered in the green boxes should be equal or increasing as the temperature warms.

- 4. Click on Save.
- 5. Click on the arrow on the right to move to the next page and return to step 2 above.

Each vacuum setpoint corresponds to a temperature interval. When the temperature threshold is reached, the vacuum setpoint changes.

According to the example shown in the table above, if the vacuum setpoint is -15 inHg, the temperature would have to reach -3°C for the setpoint to change to -10 inHg. Inversely, it would have to reach -1°C for the setpoint to change to -20 inHg.

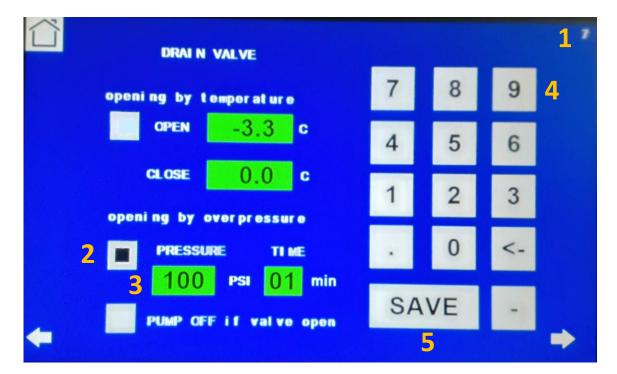
3.3.3 Activating/deactivating the automatic opening of the Drain Valve according to the outside temperature

- 1. Go to page 7 of the station interface.
- 2. Check the box Open by temperature.
- 3. Click in a green box to change the temperature value.
- 4. Enter the desired temperature level value via the keyboard on the right.
- 5. Click on Save.

Leave a difference of at least 2°C or 4°F between the opening and closing temperature for proper operation.

The valve opens if the outdoor temperature is lower than the opening input temperature. The valve closes if the outdoor temperature is equal to or higher than the input closing temperature.

It is also possible to activate the overpressure opening at the same time (see section below).


3.3.4 Activating/deactivating the automatic opening of the Drain Valve depending on the pressure in the discharge pipe

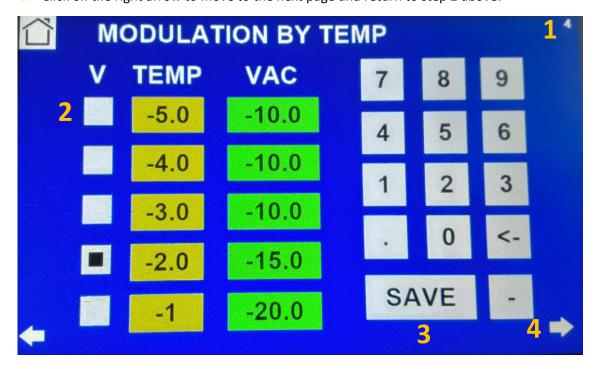
- Go to page 7 of the station interface.
- 2. Check the box Opening in overpressure.
- 3. Click in the green boxes to change the pressure value and the opening time.

"00 min" is an opening without duration, i.e. as long as the pressure exceeds the prescribed threshold, i.e. 100 psi and more in our example, the valve remains open. If the entered time is different from "00" then the valve closes after this time if the pressure is lower than the threshold, otherwise it remains open for the entered time.

- 4. Enter the desired values via the keyboard on the right.
- 5. Click on Save.

It is also possible to activate the opening by temperature at the same time (see previous section).

3.3.5 Deactivating the water pump automatically if the Drain Valve is open

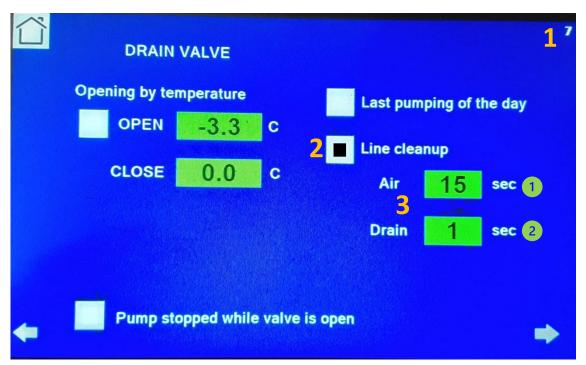

- 1. Go to page 7 of the DATACER™ station interface.
- 2. Check Pump OFF if open.
- 3. Click on Save.

3.3.6 Activate/deactivate the automatic opening temperatures of the air intake valve

- 1. Go to page 4 of the DATACER™ station interface.
- 2. Check the box(es) where the valve should open according to the temperature indicated on the right, on the same line.
- 3. Click on Save to save.
- 4. Click on the right arrow to move to the next page and return to step 2 above.

If the station is equipped to modulate the vacuum level according to the temperature, you can then check the temperature boxes that correspond to a critical vacuum level for your pump, i.e. from the vacuum level where it risks to deteriorate.

If the station is not used for automatic vacuum level modulation then the valve will still open according to the temperatures you have checked.

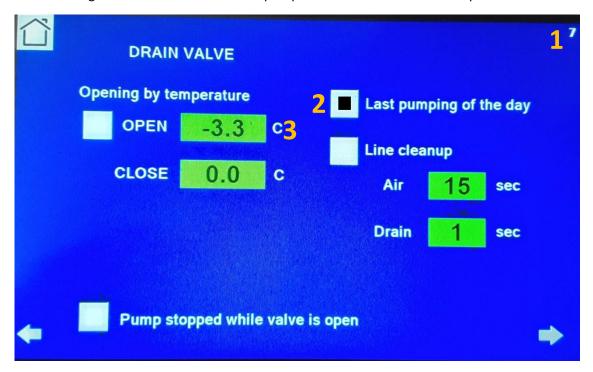


Each checked box corresponds to a temperature range.

According to the example shown in the screenshot above, the valve opens if the outdoor temperature is between -2.99 and -1.01°C.

3.3.7 Line cleanup

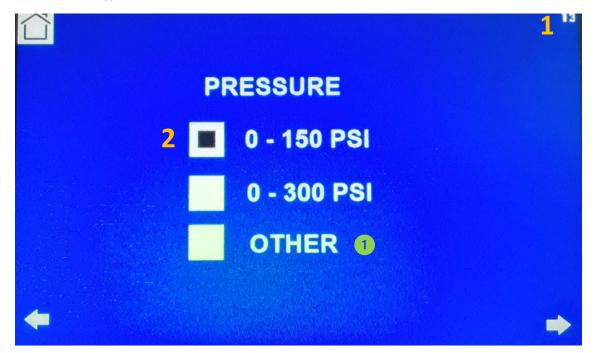
- 5. Go to the DATACER™ station page 7
- 6. Check the "Line cleanup" box
- 7. Click on green boxes to enter valves opening durations


- \bigcirc Length of time the air valve is open. Enter a value between 5 and 999 s.
- 2 Length of time the drain valve is open

Enter 0 allows to keep the valve open for an infinite period of time. This is only possible for the drain valve.

3.3.8 Last pumping of the day

- 1. Go to the DATACER™ station page 7
- 2. Check the "Last pumping of the day" box
- 3. Click on green box to enter the water pump automatic start outside temperature



The white box located on the left of "Open" doesn't need to be checked if you don't want to open the drain valve according to the outside temperature.

3.3.9 Selecting the type of pressure sensor

- 1. Go to page 13 of the station.
- 2. Check the type of sensor connected to the station.

The 0-150 and 0-300 PSI pressure sensors are used to measure a water pump pressure or a pressure at the outlet of the prefilters of a concentrator.

Select OTHER SENSOR for Pressure Sensors that measure a Tank level (0-100 in., 0-34ft and 0-10ft submersible).

3.3.10 Change the language and units

- 1. Go to page 8 of the station interface.
- 2. Click on the language button to change from French to English or vice versa.
- 3. Click on the unit button to change from metric to imperial or vice versa.

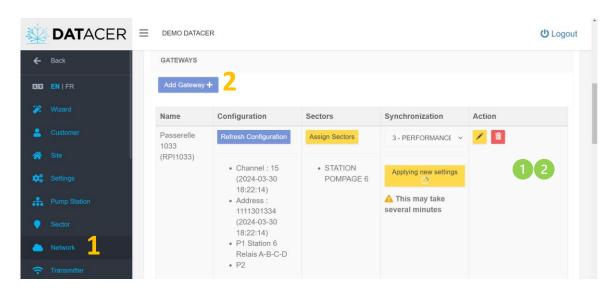
A unit change requires a restart of the DATACER™ station.

Figure 127: Visualize the DATACER station channel number

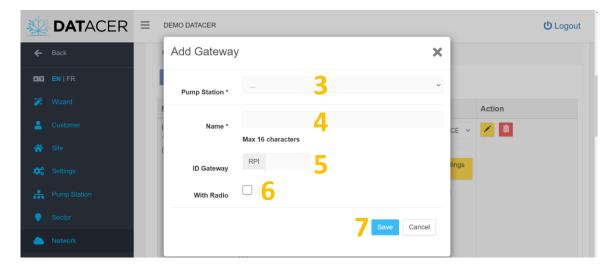
DATACER station channel number

3.3.11 Enable/disable automatic screen saving

- 1. Go to page 8 of the station interface.
- 2. Check or uncheck the Screen saver box. The screen will go to sleep after 15 minutes of inactivity.

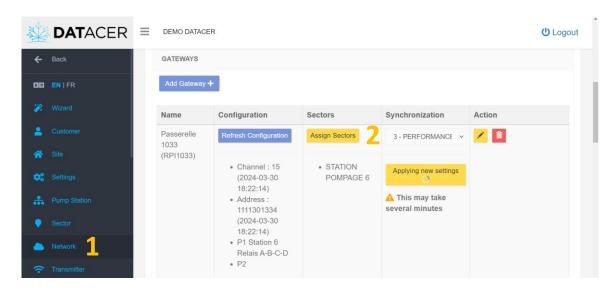

3.4 Gateway

Prerequisites:

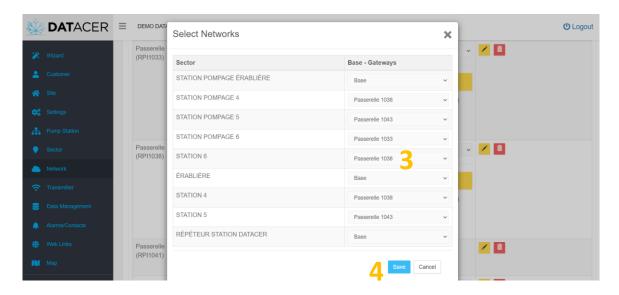

- Switch on the DATACER™ base station.
- Make sure that the software version of the base is higher than 8 (see section 3.2.6 on page 130 of the DATACER™ Manual). If this is not the case, please update your DATACER™ database online (see section 4.13 on page 289).
- Ensure that the DATACER™ base has been migrated to the new server. The remote connection address must be daXXXX.base.datacer.online. If migration has not been completed, please call Lapierre Equipment customer service at 819 548-5454.
- Enter the Admin menu.
- Add pump stations and sectors (see sections 3.2.9 and 3.2.10 on pages 134 and 135).

3.4.1 Add, modify or delete a gateway on the interface

- 3. "Network" tab.
- 4. Add a gateway.
- 5. Select the pumping station where the gateway is installed.
- 6. Name the gateway.
- Enter the 4-digit gateway ID following the three letters RPI inscribed inside the gateway (see
 - in Figure 24 page 45).
- 8. Check the box if the gateway has a radio.
- Save.


- Allows you to modify gateway information
- 2 Deletes the gateway

3.4.2 Assign one or more sectors/pumping stations to a gateway on the interface


This step connects all the radio transmitters contained in a sector(s) and/or pumping station(s) to the gateway.

It is not necessary to assign a pumping station to a gateway if the latter communicates with a DATACER™ station via a cable, see section 3.3 page 189.

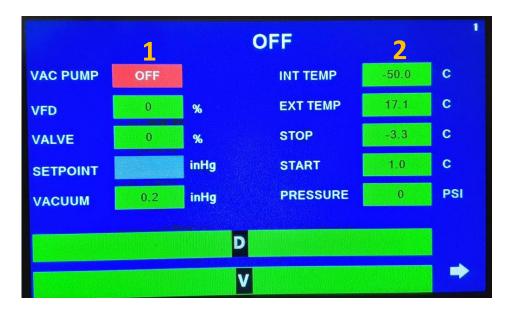
- 10. "Network" tab.
- 11. Click on the "Assign sectors" button.
- 12. Select the gateway to which a sector or pumping station is connected.
- **13.** Save.

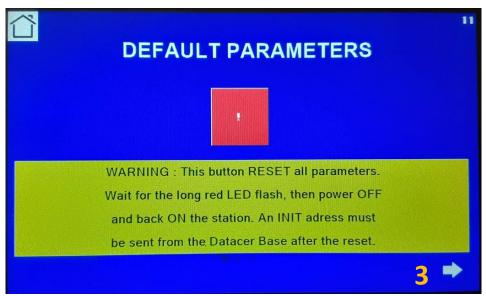
3.4.3 Case of a gateway connected to a DATACER™ station via cable

3.4.3.1 Configuring the DATACER™ station in Ethernet mode

This setting is required if a DATACER™ station is connected to the gateway via a physical connection (cable).

Prerequisites:

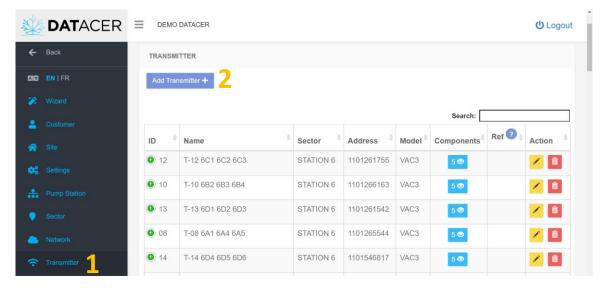

- Switch on the DATACER™ station.
- Set DATACER™ station selector to OFF position.
- 14. Press Stop and then 2. the indoor temperature value.
- 15. Press the arrow in the bottom right-hand corner to go to page 13: Communication.
- 16. Check "Ethernet".
- 17. Enter DATACER™ station serial number.

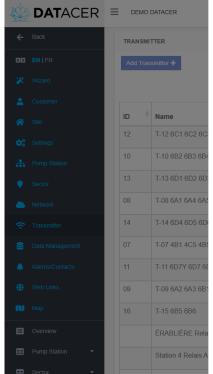

The serial number consists of the 4 digits following the letters TXW on the following selfadhesive label. This label is located inside the door of the DATACER™ station.

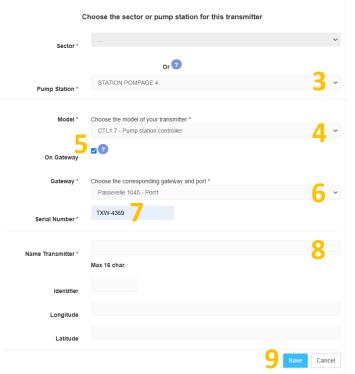
18. Press the button to return to the main menu.

3.4.3.2 Specify that a DATACER™ station is connected to a gateway in the interface

Prerequisites:


- Switch on the DATACER™ base station.
- Enter the Admin menu.
- Add pumping stations and sectors (see sections 3.2.9 on page 134 and 3.2.10 on page 135 of the DATACER™ Manual).
- Have connected the gateway in the pumping station where the DATACER™ station is to be installed (see step 3. Section 3.4.2 page 188).
- 19. Click on "Transmitters"
- 20. Click on "Add a transmitter" or
- 21. Select a pumping station in which the DATACER™ station has been installed and to which the gateway has been connected.
- 22. Select DATACER™ station model "CTL 1.7" or higher
- 23. Check the "On gateway" box to specify that the DATACER™ station is connected to a gateway via a cable.
- 24. Select the gateway and gateway port used for this DATACER™ station.




The port number is marked on the DATACER™ gateway-station connection cable.

- 25. Enter the 4-digit serial number of the DATACER™ station. See item 4. in section 3.4.3.1 page 189.
- 26. Enter DATACER™ station name
- 27. Click on "Save"

4. System use

Main steps to follow for switching on and off the various equipment and devices, presentation of the interfaces, methods of accessing the DATACER™ interface, how to establish communication between the DATACER™ base and the other radio transmitters, and the meaning of the Transmitters' LEDs. You will also find all the elements necessary for performing desired functions such as data visualization, as well as control and automation of the equipment.

Below is a list of the topics that are covered in this section.

4.1	Sta	artup	196
	4.1.1	Starting up the DATACER™ base	196
	4.1.2	DATACER™ interface presentation	199
	4.1.3	Starting up the DATACER™ station	202
	4.1.4	DATACER™ station interface presentation	203
	4.1.5	Switching on vacuum transmitters and other radio transmitters	204
	4.1.6	Establish communication between the DATACER™ base and all radio transmitter	
	4.1.7	Switch on the gateway and successfully communicate with the DATACER $^{\mbox{\tiny M}}$ base	207
	4.1.8	Establish radio communication with the transmitters	208
	4.1.9	Establish radio communication with a DATACER™ station	210
	4.1.10	Establish communication with a DATACER™ station connected to a gateway via a cable	
4.2	Int	erpreting the colored LED indicators	210
	4.2.1	Old version of LED indicator for Vacuum Transmitters, L, LL, LLL, P, PP, PPP, Combined Transmitters and DATACER™ station	211
	4.2.2	New version of LED indicator light for Vacuum Transmitters	212
4.3	En	d of season shutdown	215
	4.3.1	Shutting down the DATACER™ base	216
	4.3.2	Shutting down the gateway and end-of-season storage	221
	4.3.3	Shutting down the DATACER™ station	221
	4.3.4	Stopping vacuum transmitters and other radio transmitters	221
4.4	Ac	cessing the DATACER™ interface	222
	4.4.1	Locally directly on the computer of DATACER™ base	222
	4.4.2	Locally from another computer without internet	223
	4.4.3	Locally from a mobile device without internet	224
	4.4.4	Remotely from another computer	228

	4.4.5	Remotely from a mobile device	232
4.5	O۱	verview	233
4.6	Vie	ewing measurements	236
	4.6.1	Factors that influence the vacuum level value measured by the Sensor	237
	4.6.2	End of line vacuum level	238
	4.6.3	Vacuum level at the Extractor	240
	4.6.4	Tank Level	242
	4.6.5	Pressure of a water pump or after the prefilters of a concentrator	244
	4.6.6	Sap flow and volume	245
	4.6.7	External temperature at the line ends	248
	4.6.8	Interior and exterior temperature of a pump station	248
	4.6.9	View your data via the DATACER™ mobile	250
	4.6.10	View data and via the gateway	254
4.7	Co	ntrolling the equipment locally	254
	4.7.1	Starting/stopping a vacuum pump	255
	4.7.2	Starting a water pump	257
	4.7.3	Forcing the speed of a vacuum pump with a drive	258
	4.7.4	Forcing the Modulation Valve Open	259
4.8	Co	ntrolling equipment remotely	260
	4.8.1	Starting/stopping a vacuum pump	261
	4.8.2	Forcing the speed of a vacuum pump with a drive	262
	4.8.3	Forcing the Modulation Valve Open	263
	4.8.4	Starting/stopping a water pump	263
	4.8.5	Open/Close Drain Valve	265
	4.8.6	Equipment remote control via the gateway	265
4.9	Αι	tomate the control of your equipment	266
	4.9.1	Temperature-dependent start/stop of a vacuum pump	266
	4.9.2	Stop/restart the vacuum pump via the Float in the Humidity Trap (safety for the vacuum pump)	
	4.9.3	Modulation of the vacuum level at the Extractor according to the temperature	268
	4.9.4	Modulation of the vacuum level at the Extractor according to a set vacuum valu	
	4.9.5	Close the modulation valve if the water level in the Extractor exceeds a certain l (safety for the vacuum pump)	

	4.9.6	Start/stop a water pump according to a pond level by Electrodes	. 274
	4.9.7	Open/close a Drain Valve depending on the outside temperature and/or the pressure of a pipe	. 275
	4.9.8	Stop the water pump if the drain valve is open	. 276
	4.9.9	Opening/closing the air intake valve depending on the outside temperature (saf for the vacuum pump)	-
	4.9.10	Line cleanup	. 277
	4.9.11	Last pumping of the day	. 277
4.10	М	aps	. 277
4.11	Al	arms and notifications	. 280
	4.11.1	Viewing active alarms on the DATACER™ interface	. 280
	4.11.2	Viewing notifications received by SMS or email	. 283
4.12	Gr	aphs	. 284
	4.12.1	Vacuum level and temperature 24 / 7	. 284
	4.12.2	Tank level 24 / 7	. 285
	4.12.3	Historical graph of vacuum level and temperature per day for a season	. 286
4.13	Up	odating the DATACER™ database software	. 289

4.1 Startup

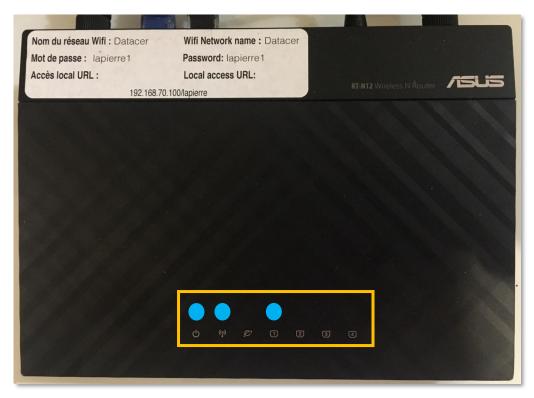
4.1.1 Starting up the DATACER™ base

Prerequisites:

- Ensure that the base is properly installed, and that all equipment is connected (see section 2.2 page 59).
- Check that your Internet service for which you pay a subscription (Router, hotspot cell) is turned on.
- Change the 3 D batteries in the base before the season starts (see Figure 2 page 20).

For DATACER bases with 2A rechargeable batteries, it is not necessary to change them every year.

1. Turn on the UPS Battery by pressing the power button. The green light turns on.


2. Turn on the DATACER™ Router by pressing the power button. The LEDs will light up blue.

For DATACER databases without router (DA number > or = 1200) please go to step 3.

3. Turn on the DATACER™ base station radio transmitter by turning the switch to the ON position.

Figure 128 : DATACER $^{\text{\tiny{IM}}}$ base radio LED indicator lights

Green radio LED indicator light:

If the green LED on the radio goes out twice in less than two seconds, the base station is communicating with at least one other radio transmitter on the network.

If the green LED on the radio stays on constantly, then the base is unable to communicate with any of the Radio Transmitters in the network.

- 2 Blue LED lights up when the Base Transmitter is powered on.
- 4. Turn on the base computer, called NUC, by pressing the on/off button. The light will change from orange to blue.

5. The screen lights up and you are taken to the default view of your local DATACER™ interface (see section 4.1.2 page 199).

4.1.2 DATACER™ interface presentation

The DATACER™ interface allows you to view the data of your sugar bush in the DATACER™ base.

It also allows you to use the remote control functions of your pumping station equipment. You can also analyze your historical data via graphs and view your alarms.

222.

To learn about the different ways to access the DATACER™ interface, see section 4.4 page

On the left is the main menu to access the different functions of the system.

Admin

The Admin tab is mainly used to set up your system according to your equipment (see section section 3.2.1 page 126).

Pumping station

The Pumping Station tab allows you to view the data measured by your DATACER™ stations and other Transmitters located in your pumping stations.

This tab also provides access to the control and automation functions of your pumping station equipment.

Sector

The Sector tab allows you to visualize your vacuum levels at the end of the lines and at your Extractors.

Tank Level

The Tank Level tab allows you to view your Tank levels in your pumping stations.

Web links

The Web Links tab allows you to access websites other than DATACER™.

Maps

The Maps tab allows you to view your data on maps by sector (see section 4.10 page 277).

Alarms

The Alarms tab allows you to view the list of active alarms according to what you have set up (see section 4.11 page 280).

Graphs

The Graphs tab allows you to view your historical vacuum levels according to temperatures for each day of the season (see section 4.12 page 284).

On the right you will find the information and functions corresponding to the selected main menu tab.

For all the data measured by the radio transmitters of your system, whatever the tab, you will find an indication of the refresh time in minutes (TIME). This time is the time it took for the system to retrieve the most recent data.

For all the measured indicators (vacuum, pressure, basin level, temperature) the colors of the boxes in the interface change according to the thresholds you have defined in Admin. To change the color thresholds see section 3.2.6 page 130.

- COMPONENT: Name of the component, for example line or extractor.
- 5 TRANSMITTER: Name of the transmitter.
- 6 SECTOR: Name of the sector.
- PUMPING STATION: Name of the pumping station.
- See nomenclature in section 3.1 page 125 for more information on the data structure.

4.1.3 Starting up the DATACER™ station

Prerequisite: Ensure that the station is properly installed and that all equipment are connected (see section 2.5 page 87).

1. Turn the station ON using the switch.

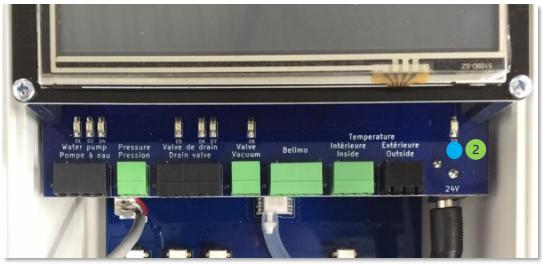


Figure 129 : DATACER™ station radio LED indicator lights

To understand the meaning of the radio LED indicator please refer to section 4.2 page 210.

The LED on the main board lights up blue when the station is powered on.

The LED on the board below the display lights up blue when the station is powered on.

Regular red flashing of the channel indicator light (or status from DATACER station version 1.8 see above) of DATACER stations with a software version greater than or equal to 400, indicates that the station program is in working order.

For DATACER stations version 1.7 and higher, please refer to Figure 127 on page 186 of the station to check the channel number.

2. The station's screen lights up and you are taken to the first page of the station's interface.

4.1.4 DATACER™ station interface presentation

The interface of the DATACER™ station is touch-sensitive and allows you to visualize the data of some parameters measured in your pumping station by your DATACER™ station.

The measured values are on the first page of the interface. The automatic functions of the equipment connected to the station are all configurable on the DATACER™ station interface (see section 3.3 page 177).

The arrow allows access to other pages.

4.1.5 Switching on vacuum transmitters and other radio transmitters

Prerequisites: Make sure the transmitter is properly installed and all equipment is connected (See sections 2.3, 2.4.1, 2.4.2 pages 67, 74 and 79).

For seasonal start-up recommendations, please see the appendix 6.2 page 304.

- 1. Turn the transmitter ON using the power switch.
- 2. Ensure that the batteries are 95% or more charged.

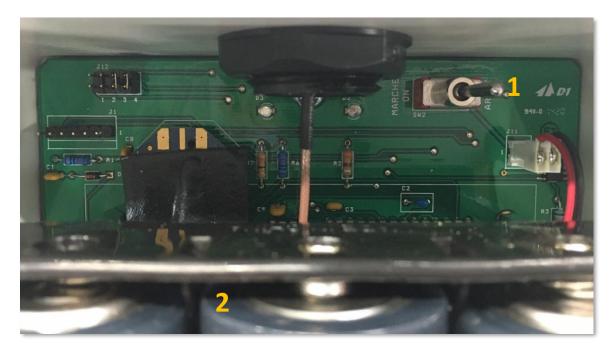


Figure 130 : Transmitter radio LED indicator lights

To understand the meaning of the radio and channel LED indicators please refer to section 4.2 page 210.

When first used, remove the white tab so that the batteries can make contact.

For non-solar transmitters, the batteries must be replaced quickly when the interface indicates a percentage lower than 5% or as soon as the sap flow season is over to prevent the batteries from running out and damaging the transmitter.

When new solar transmitters are delivered, the batteries are approximately 50% charged. To maintain a charge level greater than or equal to 50% until the day of deployment, each transmitter should be installed on a south-facing outdoor mount so that its solar panel can be exposed to daylight.

4.1.6 Establish communication between the DATACER™ base and all radio transmitters

For seasonal start-up recommendations, please see the appendix 6.2 page 304.

Prerequisites:

- Make sure the DATACER™ base is turned on, the batteries are changed, and all equipment is plugged in (see section 2.2 page 59).
- Make sure that the batteries in the transmitters are at over 90% capacity for alkaline batteries or at over 50% capacity for rechargeable batteries according to the view by sector/by Transmitter (see section 4.6.2 page 238) or that the power cords of the Transmitters or DATACER™ stations are connected.
- Make sure the Transmitters are on the same channel as the base (see section 2.2.3 page 65) and that the 10-digit address has been entered during setup (see Figure 126 page 138).
 - 1) Put the system in installation synchronization mode (see section 3.2.6 page 130).
 - 2) Turn on the Transmitters that are connected to the power supply first, such as Repeaters, Tank Levels, DATACER™ stations and others. To turn on the Transmitters see sections 4.1.3, 4.1.5 pages 202 and 204.
 - 3) Turn on all the battery-powered Transmitters and Repeaters by placing them in close proximity to the DATACER™ base. For example, you could put all the battery-powered Transmitters and Repeaters in the same room as the base. After 5 minutes, all the Transmitters should have communicated with the base and their refresh time should remain between 0 and 2 minute on the DATACER™ interface.

To understand the meaning of the radio and channel LED indicators please refer to section 4.2 page 210.

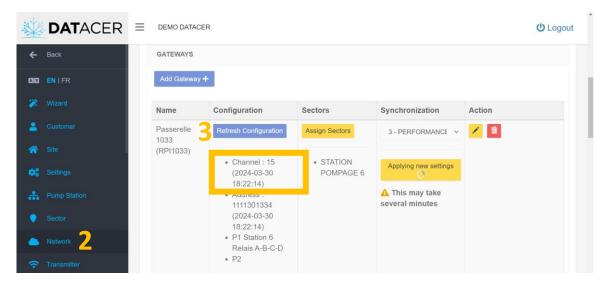
4) Proceed with the installation of the transmitters and repeaters on their respective wooden stakes in your sugar bush. We recommend that you install them starting from the closest to the furthest from the base. This will allow you to rebuild your Mesh Network (see section 2.1.4 page 56) in a progressive manner.

It is important to reposition the Transmitters in the same locations as the previous year so that the radio communication is the same and to measure the vacuum levels that correspond to your settings.

5) When all the above steps have been completed, leave the system running for one day in operation mode. The next day check that the refresh times of all the transmitters are between 0 and 1 minute or in the same range as what you observed the previous year.

Once the forest deployment is complete, we recommend putting the synchronization into "deep sleep" mode to minimize energy consumption until the system's normal period of use. The data refresh times on the interface will be greater than or equal to 15 minutes. If the "sleep" synchronization is not available, please choose "operation" or "performance" mode until the next internet update of the DATACER™ base. Once the update has been completed, please set the synchronization to "deep sleep" until the system's normal period of use.

Please see section 3.2.6, page 130 to choose the most suitable synchronization mode for your needs.

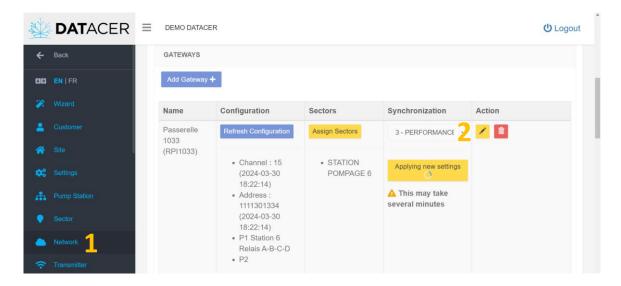

If you have added Transmitters compared to the previous year, it is possible that the times are different for the current year due to a modification of your Mesh Network (see section 2.1.4 page 56).

4.1.7 Switch on the gateway and successfully communicate with the DATACER™ base Prerequisites:

- Validate that the install is compliant (see section 2.6 page 115).
- Validate that the settings are compliant (see section 3.4 page 187).
- Enter the interface in Admin mode.
- 1. Set the gateway switch to the "On" position. See Figure 23 page 45.
- 2. "Network" tab.
- 3. Click on the "Refresh configuration" button

The channel number should be displayed in the configuration column.

- For the instruction on the radio indicator light, see section 4.2.1 on page 211.
- 2 Blue indicator light is on when the gateway is powered up.


4.1.8 Establish radio communication with the transmitters

Prerequisites:

 The gateway is switched on and communicating with the DATACER™ base (see section 4.1.7, page 207).

- Ensure that the transmitter batteries are at over 90% capacity for alkaline batteries or at over 50% capacity for rechargeable batteries as seen by sector/transmitter (see section 4.6.2 page 238 of the DATACER™ Manual) or that the power cords of the transmitters or DATACER™ stations are connected.
- Ensure that the transmitters are on the same channel as the gateway (see section 2.2.3, page 65) and that the 10-digit address has been entered when setting up the transmitters (see Figure 126, page 138).
- Enter the interface in Admin mode.
- 1. "Network" tab
- 2. Select the "Installation" synchronization mode.

- 3. Switch on the radio transmitters by placing them in the immediate vicinity of the gateway (e.g., in the same room).
- 4. For the initial startup and communication with the gateway, please run a transmitter address initialization command (see section 3.2.12, page 138 of the DATACER™ manual). Several address initialization commands may be required.
- 5. After 10 minutes, all transmitters should have communicated with the DATACER™ base, and their refresh times should remain between 0 and 2 minutes on the DATACER™ interface.
- 6. Then, install the transmitters that you have set up on your sugar bush. We recommend that you install them starting with the nearest to the furthest from the gateway. This will allow you to gradually rebuild your mesh network (see section 2.1.4, page 56 of the DATACER™ Manual).
- 7. Once all the above steps have been followed, leave the system running for one day. The next day, check that the refresh times of all the transmitters are between 0 and 1 minute, or in the same order of magnitude as what you observed the previous year.

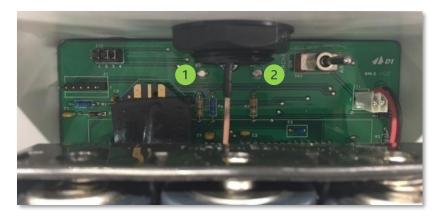
As with a DATACER™ base, if the gateway radio is switched off, no radio transmitters in the area will be able to communicate with the gateway. As a result, the radio transmitters can lose battery power very quickly.

4.1.9 Establish radio communication with a DATACER™ station

A DATACER™ station can communicate with a gateway via radio waves. Ensure that the DATACER™ station is set to "radio" mode (see section 3.4.3.1, page 189). In addition, the "on gateway" box corresponding to item 5 of section 3.4.3.2, page 191 must not be checked. The procedure for establishing communication is the same as that described in section 4.1.8, page 208.

4.1.10 Establish communication with a DATACER™ station connected to a gateway via a cable

Prerequisites:


- The gateway is switched on and communicating with the DATACER™ base (see section 4.1.7, page 207).
- The cable between the DATACER™ station and the gateway is properly installed.
- The settings have been made in accordance with section 3.4.3, page 189.

4.2 Interpreting the colored LED indicators

The LED indicators on the Transmitters inform the user of various Transmitter-related parameters such as synchronization status, signal strength, channel number, successful data communication and successful address initialization.

The interpretation of the LED indicators is different for each version, please refer to the correct section below.

- If the radio's LED light is flashing green only, please refer to section 4.2.1 page 211.
- If the radio's LED light can also flash yellow, red or blue, then please refer to section 4.2.2 page 212.

- Radio LED indicator (left on the board)
- Channel LED indicator (right on the board)

The right interpretation of the colored LED indicators helps optimize the position of the Transmitters on the field, improve the responsiveness of the system and reduce battery consumption.

4.2.1 Old version of LED indicator for Vacuum Transmitters, L, LL, LLL, P, PP, PPP, Combined Transmitters and DATACER™ station

Radio LED indicator light:

The duration of the flashes indicates whether or not the Transmitter is synchronized with the rest of the Mesh Network.

Green flashing	Transmitter synchronized with the Mesh Network?
Short Rapid flashes	Yes
Long Series of long flashes then turns off	No

To verify that data communication from the Transmitter has taken place, please ensure that the data refresh time is 0-1 min on the DATACER™ interface.

Channel LED indicator light:

- On power-up, the number of **red** flashes equals the channel number of the Transmitter.
- A long **red** flash, followed by two short flashes, indicates that the address initialization has taken place.

Decision rules:

Observations	Explanation	Actions
Radio LED		
Green flashing	Transmitter not	1) Turn on all Transmitters in the immediate
long	synchronized	vicinity of the base before deploying them.
		2) Verify that the base channel is the same as
		the Transmitter channel.
		3) Make sure the Transmitter is in close
		proximity to an already synchronized
		Transmitter. Turn the Transmitter off and on

4.2.2 New version of LED indicator light for Vacuum Transmitters

Radio LED indicator light:

- The duration of the flashes indicates whether or not the Transmitter is synchronized with the rest of the Mesh Network.
- The color of the flashes indicates the signal strength between this Transmitter and the last one it communicated with in the network.

Flashing color	Long	Short
	Series of long flashes then turns off.	Rapid flashes
		Transmitter is synchronized.
	Transmitter is not	
	synchronized.	
Yellow	Waiting for synchronization	Waiting for the calculation of
	with the Mesh Network.	the signal strength.
Red		Poor
Green		Fair to Good
Blue		Excellent

The frequency of a synchronized Transmitter's flash series depends on the synchronization mode. Every 7 seconds in installation mode and every 15 seconds in operation mode.

Channel LED indicator light:

- On power-up, the number of **red** flashes equals the channel number of the Transmitter.
- A long **red** flash, followed by two short flashes, indicates that the address initialization has taken place.
- The LED light stays on **red**, indicating that the Transmitter is communicating its data to the base. In other words, the data refresh time is 0-1 min on the interface.

To ensure proper data communication throughout the season, please verify that the radio's LED light is flashing **blue** or **green** and that the channel's LED light stays on **red** for at least 1 minute in setup mode and 2 minutes in operation mode.

Decision rules:

Observations		Explanation	Actions
Radio LED	Channel LED		
Yellow		Transmitter is not synchronized	 Turn on all Transmitters in the immediate vicinity of the base before deploying them. Verify that the base's channel is the same as the Transmitter's channel. Make sure the Transmitter is in close proximity to a Transmitter that is already synchronized. Turn the Transmitter off and on at the beginning of the flashing cycle of the already synchronized Transmitter. Turn off/on the Transmitter of the base station.
Yellow short		Transmitter synchronized and waiting for signal strength calculation	Wait. The signal strength calculation may take up to 1 minute.
Red	Regardless of the observations	Poor signal strength	Move the Transmitter towards the next Transmitter in the communication chain to increase the signal strength.
Green	Remains off	Not initialized with the base Fair to good signal strength	 Start Address initialization of the Transmitter. Move the Transmitter towards the next Transmitter in the communication chain to increase the signal strength.
	On red intermittent	signal strength fair to good High traffic	Move or add some Transmitters to create new Paths to the base.
	On red constant	Fair to good signal strength Successful data communication	1) Acceptable, the Transmitter could be moved to blue, otherwise leave it in its original position. This Transmitter may be more sensitive to ambient noise and data communication may be intermittent.

Observation		Explication	Action
Radio LED	Channel LED		
Blue	Remains off	Signal strength excellent	1) Start Transmitter address initialization.
		Not initialized with base	
	On	Signal strength	1) Move or add some Transmitters to
	red	excellent	create new Paths to the base.
	intermittent	High traffic	
	On	Signal strength	1) No action is required. Transmitter is
	red	excellent	perfectly installed.
	constant		
		Successful data	
		communication	

4.3 End of season shutdown

For seasonal start-up recommendations, please see the appendix 6.2 page 304.

We strongly recommend leaving the computer (NUC) in your DATACER database running after the system's usage season. This protects the integrity of the data in the computer and ensures that the computer is in good working order at the start of the next season. To do this, it is necessary to leave the computer's power adapter connected to the overload protection and

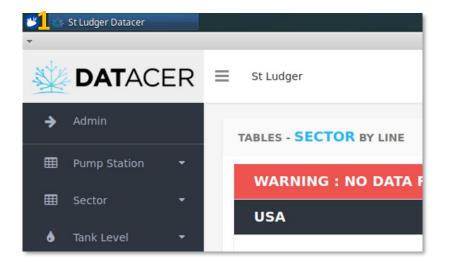
backup battery (UPS). In addition, the blue indicator light on the computer's button confirms that the computer is running.

To limit lightning-related problems, we strongly recommend unplugging all cables and electrical adapters connected to the bases (except the "NUC" computer), routers, screens, stations, gateways and combined transmitters at the end of the season.

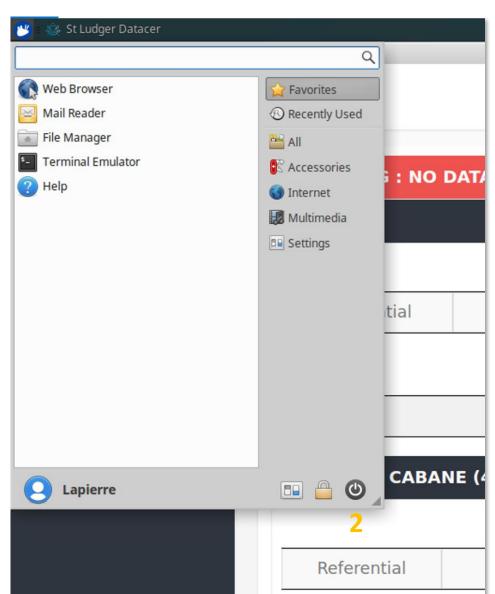
If you need to move your base to keep the computer running during the off-season, please refer to the manual at section 4.3.1 page 216 for stopping the base and then section 4.1.1 page 196 for starting the base.

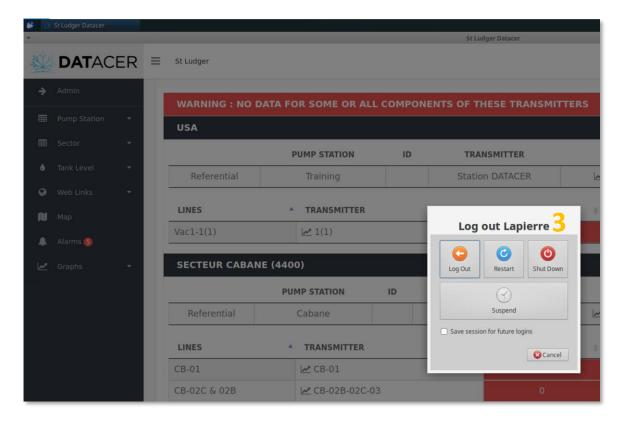
Please note that it is not necessary to plug in and turn on the display or the base station's radio transmitter after the season. Only the computer (NUC) should be ON.

If you leave your solar transmitters in the woods all year round, please set the synchronization to "sleep" before turning off the DATACER base radio transmitter.


4.3.1 Shutting down the DATACER™ base

1. Click on the button at the top left of your screen.




System use

2. Click on the stop button.

3. Click on the Shut down button.

4. Turn the Transmitter OFF from the base using the switch.

5. Turn off the Router by pressing the power button. For bases > 1200 the router is no longer present. Please go to step 6.

6. Turn off the overload battery by pressing the power button. The green LED should go out.

Leave the overload protection battery power cord connected to 120V to extend its life. You can, however, turn it off by holding down the power button until the green LED light goes out.

7. Disconnect the antenna cable.

We strongly recommend that you unplug the antenna cable connected to the Transmitter to avoid lightning damage to your equipment.

4.3.2 Shutting down the gateway and end-of-season storage

- 1. Set the switch to the "Off" position.
- 2. Disconnect the electrical adapter from the gateway.
- 3. Unscrew and disconnect the antenna cable.

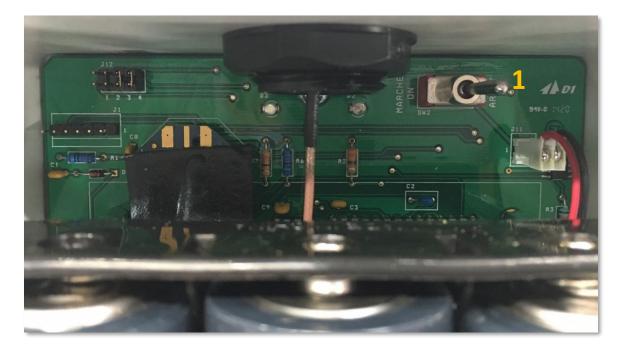
At the end of each season, we strongly recommend that you disconnect the antenna cable on the gateway to prevent lightning damage.

If you leave your solar transmitters in the woods all year round, please set the synchronization to "sleep" before turning off the DATACER gateway radio transmitter.

4.3.3 Shutting down the DATACER™ station

1. Turn OFF the station using the switch.

- 2. Unplug the electrical cords.
- 3. Disconnect the antenna cable.


We strongly recommend that you unplug the antenna cable connected to the Transmitter to avoid lightning damage to your equipment.

4.3.4 Stopping vacuum transmitters and other radio transmitters

For seasonal start-up recommendations, please see the appendix 6.2 page 304.

1) Turn the Transmitter OFF using the switch.

- 2) Disconnect the electrical cords or remove the batteries depending on the type of transmitter.
- 3) Disconnect the antenna cable for Transmitters with antenna cable.

We strongly recommend that you unplug the antenna cable connected to the Transmitter to avoid lightning damage to your equipment.

We recommend removing the batteries from transmitters powered by alkaline batteries once the season is over or replacing them promptly when the percentage displayed on the interface reaches 5%.

If the solar transmitters are left turned on (switch to ON) in the forest after the season, it is mandatory to choose the "sleep" synchronization in the DATACER™ base to maintain radio communication in the network while keeping the battery percentage at a maximum until the start of the next season. Once the "sleep" synchronization is selected, turn off the DATACER™ base radio transmitter according to the procedure described in the DATACER™ manual.

4.4 Accessing the DATACER™ interface

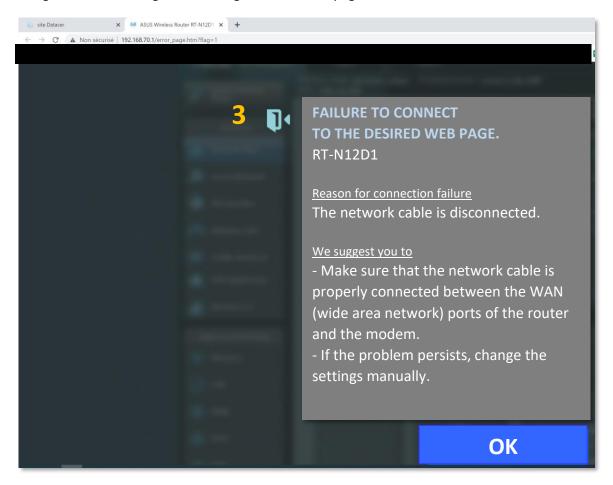
4.4.1 Locally directly on the computer of DATACER™ base

See section 4.1.1 page 196.

4.4.2 Locally from another computer without internet

Prerequisites:

- Make sure the DATACER™ base is turned on and that all equipment is plugged in. (See section 2.2 page 59).
- Be within reach of the DATACER™ Router.
- 1. On your other computer, select the Wi-Fi network of the DATACER™ Router. The name of the network will be **datacerXXXX**. (XXXX: 4 digits or letters).
- 2. Click on Connect.


Network name or network key name: datacer.

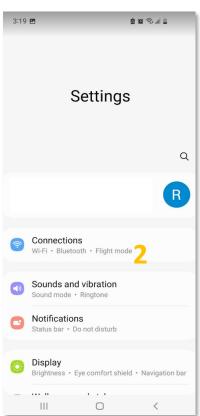
Password: lapierre1.

3. Ignore the following error message and close the page.

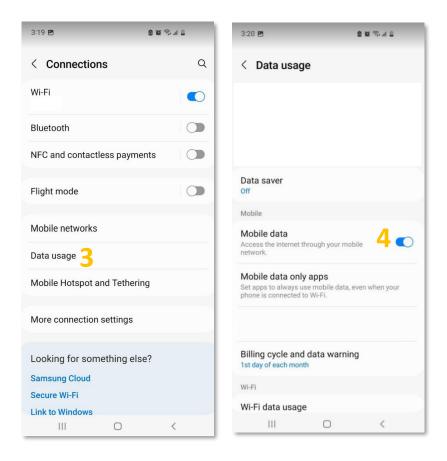
4. Open an Internet browser, Google Chrome is recommended. Enter the local connection address: **192.168.70.100/lapierre** and press Enter/Validate on your keyboard.

4.4.3 Locally from a mobile device without internet

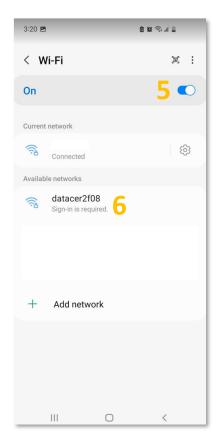
Prerequisites:


- Make sure the DATACER™ base is turned on and that all equipment is plugged in (See section 2.2 page 59).
- Be within reach of the DATACER™ Router.

- 1. On your mobile device, turn off mobile data. For example on your Android cell phone, click on the Settings icon.
- 2. Click on Connections.

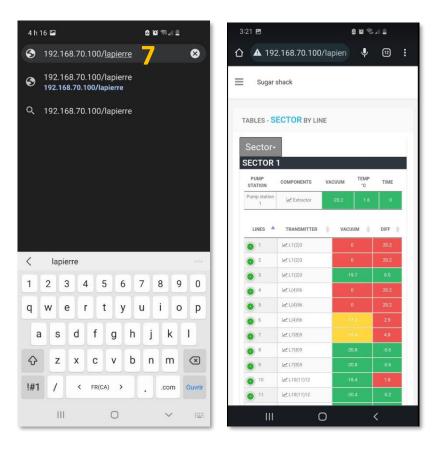


- 3. Click on Data Usage.
- 4. Disable Mobile Data, the blue button will change to grey.


- Select the Wi-Fi network of the DATACER™ Router.
- 5. Enable Wi-Fi, the grey button will change to blue.
- 6. Select network datacerXXXX.

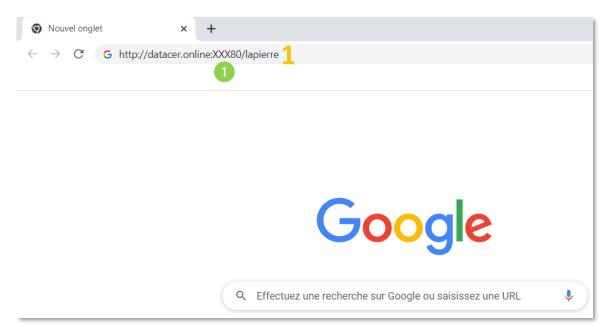
Network name or network key name: datacer.

Password: lapierre1.



Open a web browser page.
 Enter the local connection address in the address bar: 192.168.70.100/lapierre and click on Enter/Validate.

We recommend using Google Chrome for mobile devices.



4.4.4 Remotely from another computer

Prerequisites:

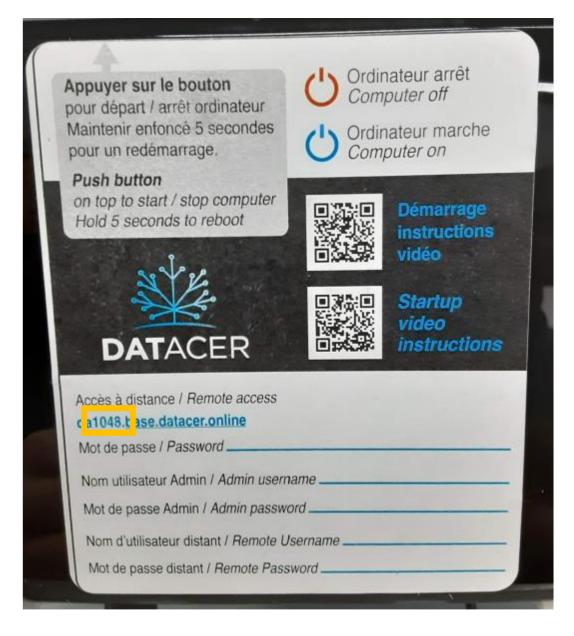
- Make sure the DATACER™ base is turned on and that all equipment is plugged in (See section 2.2 page 59).
- The DATACER™ Router must be connected to the Internet.
- Make sure your other computer is also connected to the Internet (Wi-Fi network or Ethernet cable from your personal router).
- For the first connection, connect to the DATACER™ interface directly on the DATACER™ base computer. Create a username and password for a remote connection (see section 3.2.4 page 128).
- 1. Open an Internet browser page, Google Chrome is recommended. Enter the remote connection address.

The address is written on the label affixed to the DATACER™ base.

The XXX is a three-digit number that represents your system number. You will find it written on the DATACER™ base (see photo below).

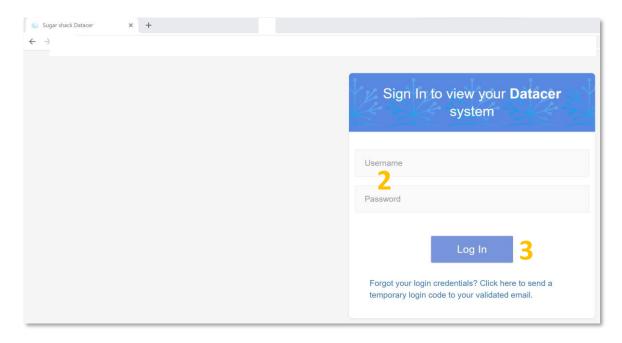
Labels before January 2023:

The address is: datacer.online:XXX80/lapierre



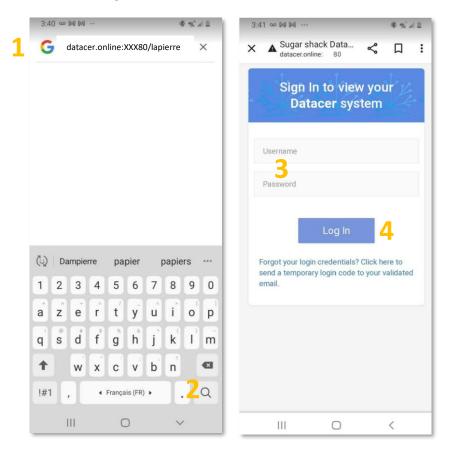
Labels after January 2023:

The XXXX is a four-digit number that represents your system number. You will find it written on the DATACER™ base (see photo below).


The address is: daXXXX.base.datacer.online

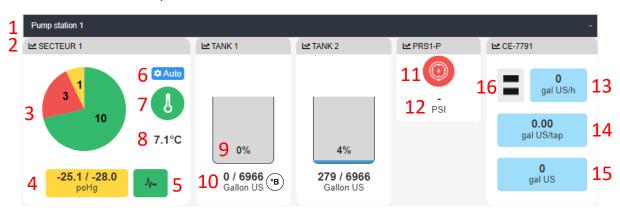
2. Enter your username and password.

3. Click on Login.


4.4.5 Remotely from a mobile device

Perequisites:

- Make sure the DATACER™ base is turned on and that all equipment is plugged in (See section 2.2 page 59).
- The DATACER™ Router must be connected to the Internet.
- Make sure your mobile device is also connected to the Internet (Wi-Fi network from your personal router or available mobile data).
- For the first connection, connect to the DATACER™ interface directly on the DATACER™ base computer. Create a username and password for a remote connection (see section 3.2.4 page 128).
- 1. Open an Internet browser page, Google Chrome is recommended. Enter the remote connection address. See section 4.4.4 page 228 to find connection address.



- 2. Click on Search.
- 3. Enter your Username and Password.
- 4. Click on Log In.

4.5 Overview

The overview is a summary view of all the indicators measured in the sugar bush. It allows a rapid diagnosis to be made on the operation of the installations in the forest and in the pumping stations in order to make informed decisions. In addition, it is possible to navigate in the system from different buttons present in this view.

Legend:

1) Pump station name

If an alarm connected to the pumping station or associated sector(s) is triggered, then the banner will turn red and a bell will appear to the left of the pumping station name.

Clicking on the bell provides access to the list of triggered alarms.

- 2) Sector name
- 3) End of line vacuum circular diagram
 - a. Case 1: An extractor is the sector vacuum reference

The diagram indicates the number of line ends attached to the sector according the vacuum difference between the reference and the line end. The three colors (green, yellow or red) represent three levels of differential or tightness threshold (extractor vacuum level – line vacuum level). Each tightness threshold can be configured in admin via parameters. In the example above, 10 lines in green means that their differential is less than 0.5 inHg. 1 line in yellow means that its differential is between 0.5 and 1 inHg. 3 lines in red means that their differential is greater than 1 inHg.

b. Case 2: No vacuum reference for the sector

The diagram indicates the number of line ends attached to the sector according to their own vacuum level. The three colors (green, yellow or red) represent three end-of-line vacuum levels. Each vacuum level can be adjusted in admin via the settings. For example, green represents a vacuum level below -26 inHg, yellow a level between -26 and -25 inHg, and red a level above -25 inHg.

Clicking on the diagram provides access to the detailed list of vacuum levels by line as well as their differentials with the sector reference extractor (if present).

If the data communication delay of a vacuum transmitter is greater than the normal delay, then the number of lines corresponding to this transmitter is displayed in gray in the diagram.

If the sector vacuum pump is controlled by a DATACER™ station and the pump status is "Off" then the diagram becomes a red disk with a white square which means that the vacuum pump is stopped.

If the extractor vacuum reference level is lower than 5 inHg then the diagram becomes a red disk with a white triangle.

4) Current extractor vacuum level / current setpoint vacuum level requested by the DATACER™ station. If there is no vacuum reference for the sector then no vacuum level will appear. Likewise, if vacuum modulation is not activated (by temperature or by fixed setpoint) then no setpoint will appear. The three colors (green, yellow or red) are associated with three differential vacuum levels or three tightness thresholds (set point

vacuum level – extractor vacuum level). Each tightness thresholds can be setup in the settings page throughout the admin menu.

If the extractor vacuum level is greater or equal to the set point vacuum level then the box stays in green.

If the extractor vacuum level is lower than the set point vacuum level then the box color is according to the differential level (extractor vacuum level – setpoint vacuum level). These vacuum differential levels are the same as the vacuum differential levels (extractor vacuum level – end line vacuum level).

In the example above, the extractor vacuum level (-25,1 inHg) is lower than the setpoint vacuum level (-28 poHg). The vacuum differential level (setpoint – extractor) is equal to 2,9 inHg and this level matches with the yellow color.

- 5) Vacuum modulation by temperature is activated. If this symbol is absent and a setpoint value is still indicated, then this means that the modulation in progress is done by fixed setpoint.
- 6) Button present only if a DATACER™ station is attached to the sector.

Here are the different possible states:

Auto (button in blue) = Current equipment control mode displayed on the DATACER™ interface is "Automatic control"

Man (button in blue) = Current equipment control mode displayed on the DATACER™ interface is "Remote manual control"

Man (button in red) = DATACER™ station selector is in the "MAN" position

Off (button in red) = The DATACER™ station selector is in the "OFF" position

Clicking on this button opens the pump station control page.

- 7) Outside temperature icon. The color (green or red) changes according to the temperature thresholds set in admin via settings.
- 8) Outside temperature value measured by the DATACER™ station.
- 9) Percent tank level
- 10) Current volume / total volume of the tank. The current volume is a percentage of the total tank volume entered by the user. The percentage is determined by the current tank level height. Depending on the current tank level height and the tank shape, the current volume displayed may be approximate.

The sticker indicates that a brix level has been entered for this tank, therefore the tank level takes this brix level into account. To change the brix level of the pool please see the example in the section 2.4.2 page 79

- 11) Pressure icon. The colors (green, yellow and red) changes according to the pressure thresholds set in admin via parameters.
- 12) Pressure value.
- 13) Average flow rate from the last hour.
- 14) Current day volume (reset to 0 every day at 6 a.m.)
- 15) Current day volume per tap (reset to 0 every day at 6 a.m.)
- 16) Sap flow trend.

the sap flow tends to rise.

the sap flow tends to be stable.

the sap flow tends to be stable.

the sap flow has stopped.

General mention:

- The icon provides access to the different graphs (extractor vacuum level when it is the sector reference, tank level, pressure and sap meter data)
- If the data communication delay from a transmitter installed in a pumping station is
 greater than the normal delay, then the icons corresponding to its sensors are displayed
 in gray in the overview. For example, if the communication delay of a PP transmitter
 measuring a tank level and a water pump pressure exceeds the critical delay threshold
 then the tank level and pressure icons will turn gray. This gives an indication to the user
 that the data displayed is not recent.

4.6 Viewing measurements

Prerequisites: For all the functions described below, make sure that the installation, setup and start-up of the base station and Transmitters have been carried out correctly (see the following sections: installation 2, settings 3 and startup 4.1.1 pages 51, 123 and 196).

4.6.1 Factors that influence the vacuum level value measured by the Sensor

Understanding the factors that influence the vacuum level values read by the Sensors allows you to better interpret the data from your system.

Diameter of the leak:

The larger the diameter of the leak, the greater the flow of air entering the pipe, the greater the pressure drop caused by the flow of air to the Extractor and the lower the vacuum.

Distance of the leak from the Extractor:

The further away the leak is from the Extractor, the greater the distance traveled by the air, the greater the pressure drop and the lower the vacuum.

Flow rate:

The flow rate can have an effect on the vacuum levels read at the end of the line.

Temperature:

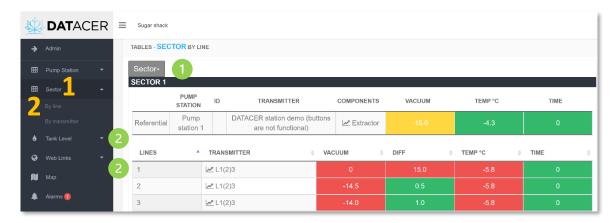
Temperature has a direct physical effect on the vacuum sensor. DATACER™ vacuum sensors are calibrated for use from -10 to +85°C. Within this temperature range, the actual vacuum level value is equal to the measured value plus or minus 0.3 inHg.

Atmospheric pressure:

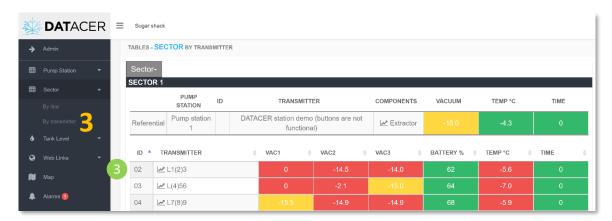
As the atmospheric pressure increases, the vacuum increases.

Altitude:

As the altitude increases, the atmospheric pressure decreases and the vacuum level decreases. It is assumed that a positive difference of 100 feet (30.48 m) between the position of the Vacuum Sensor connected to the end of the line and the one connected to the Extractor will cause a decrease in vacuum level of about 0.1 inHg.


Let's assume that the Vacuum Sensor connected to the Extractor is located at sea level (0 feet elevation) and that the Vacuum Transmitter is located at 100 ft (30.48 m) elevation. In addition, we consider that the vacuum readings are not influenced by the other factors listed above. In this case, if the vacuum level at the Extractor is equal to -25 inHg then the reading from the End of Line Vacuum Sensor will be -24.9 inHg.

If you wish to correct the vacuum level reading for a given Vacuum Sensor, please see section 3.2.17 page 146.


4.6.2 End of line vacuum level

- On the DATACER™ interface, click on Sector.
- Click on view By line.
- 3. Or on view By Transmitter.

Sector view by line - vacuum at the end of line

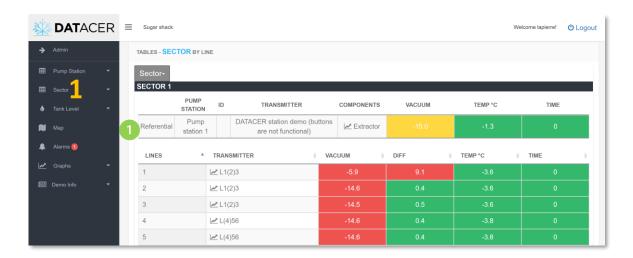
- 1 The list of lines or Transmitters is always sorted by sector.
- For each line, you have the name of the line (LINES) and the name of the Transmitter (TRANSMITTER) to which it is attached. You also have the measurement of the vacuum level (VACUUM), the difference in vacuum level between the Extractor and the end of the line (DIFF), a measurement of the outside temperature of the Transmitter in question (TEMP C) and a refreshment time for receiving the data in minutes (TIME)

Sector seen by Transmitter - vacuum at end of line

Transmitter (TRANSMITTER). The interface displays the measurement of the vacuum levels VAC1, VAC2 and VAC3 on a line depending on whether it is a single, double or triple vacuum Transmitter. You will also find the percentage of battery remaining (BATTERY %), a measurement

of the outdoor temperature of the Transmitter in question (TEMP°C) and a refreshment time of data reception in minutes (TIME)

The order of the vacuum level measurements corresponds to the connection position of 5/16 in. (7.94 cm) tubing on the Transmitter vacuum seen from the front and antenna up. Thus, VAC1 is on the left, VAC2 in the center and VAC3 on the right.


Figure 131 : Significance of the vacuum level measurements on the interface (VAC1, VAC 2 and VAC 3) in relation to the position of the vacuum ports on a transmitter

4.6.3 Vacuum level at the Extractor

Method 1: Via the sector tab.

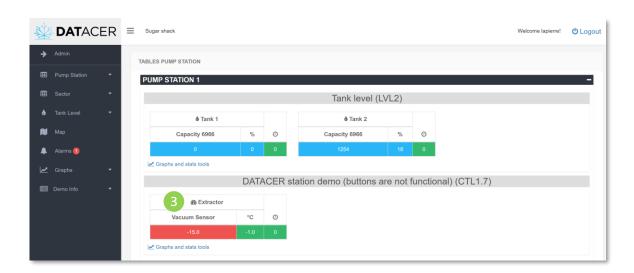
1. On the DATACER™ interface, click on Sector. Regardless of the Per Line or Per Transmitter view.

Sector seen by Transmitter - vacuum to Extractor

For each sector, you have the vacuum level of the Extractor referring to the sector (VACUUM) and the refreshment time for receiving the data in minutes (TIME). You are reminded of the name of the Component (COMPONENT), in this case the name of the Extractor, the name of the Transmitter to which the Component is attached (TRANSMITTER) and the name of the pumping station (PUMPING STATION) to which the Transmitter in question is linked.

On the interface you will be able to see the vacuum level of your Extractor if you have assigned an Extractor as reference for this sector (see section 3.2.16 page 143).

Method 2: Via the pumping station tab if the vacuum level is measured by a DATACER™ station or other transmitters with vacuum option in the pumping station.


- 1. On the DATACER™ interface, click on Pump Station.
- 2. Click on Pump Station Control.
- 3. Or by Transmitter.

Pump station seen by pump station control - vacuum at the Extractor.

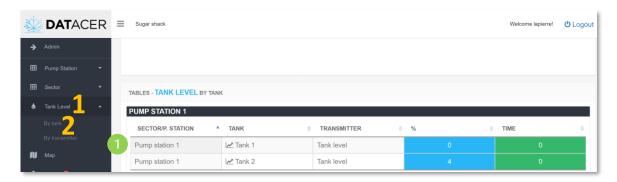
- DATACER™ stations are sorted by pump station name.
- For each DATACER™ station you will find a reminder of the name you have assigned to it in TRANSMITTER.

Pump station seen by Transmitter - vacuum at the Extractor

This view allows you to view the name of the Extractor. To change the name, see the method described in section 3.2.14 page 141.

System use

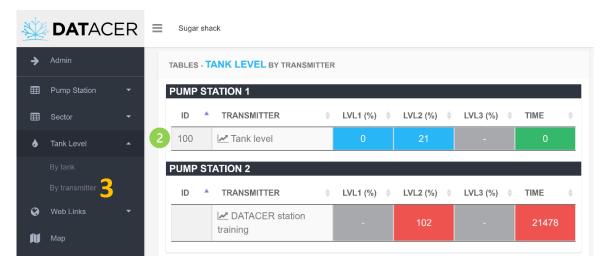
Method 3: Via the DATACER™ station interface if it is the DATACER™ station that measures the vacuum level of the Extractor.



4.6.4 Tank Level

Prerequisites: Make sure you have installed (see section 2.4 page 73) and configured your Transmitters. See section 3.2.18 page 146 to configure your sensor and section 3.2.19 page 150 for Pressure Sensors.

Method 1: Via Tank Levels


- 1. On the DATACER™ interface, click on Tank Level.
- 2. Click on View by Tank.
- 3. Or on by Transmitter.

ank level View by Tank - Tank level

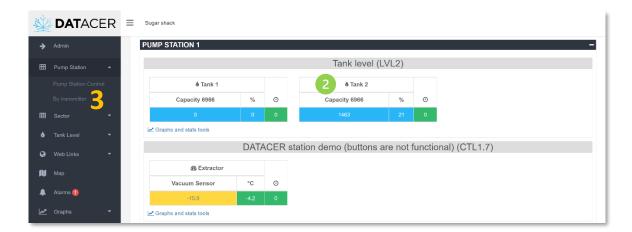
For each Tank you have the value of the level in percentage (%), the name of the Tank (TANK LEVEL), the name of the Transmitter to which the Sensor is connected (TRANSMITTER) and the refreshment time for receiving the data (TIME).

Tank level View by Transmitter - Tank level

For each Transmitter capable of measuring a Tank level (by sonar or by pressure). The interface displays the LVL1, LVL2 and LVL3 components depending on whether it is a single, double or triple Tank Level Transmitter.

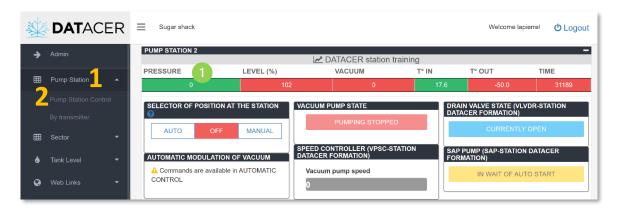
If you are measuring two or three Tank levels on the same Transmitter, the order of the LVL1, LVL2 and LVL3 measurements follows the same logic as for the vacuum Transmitters (see Figure 131 page 239).

Method 2: Via pump station if the Tank level is measured with a DATACER™ station.


- 1. On the DATACER™ interface, click on Pump Station.
- 2. Click on View by Pump Station Control.
- 3. Or on by Transmitter.

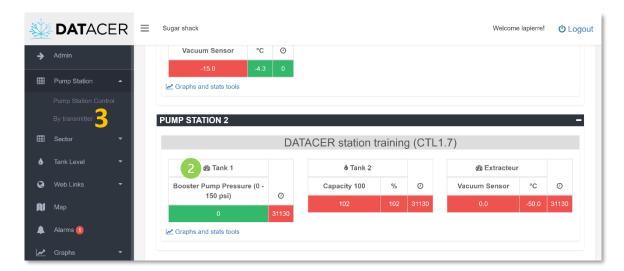
Pump Station View by Pumping Station Control - Tank Level

- 1 LEVEL: Level by ultrasound sensor.
- 2 LEVEL BY PRESSURE: Level measured by a pressure sensor.


Pump Station Viewed by Transmitter - Tank Level

Corresponds to the name of the Tank.

4.6.5 Pressure of a water pump or after the prefilters of a concentrator


Method 1: Via the pumping station tab if the Tank level is measured with a DATACER™ station.

- 1. On the DATACER™ interface, click on Pump Station.
- 2. Click on View by Pumping Station Control.
- 3. Or on by Transmitter.

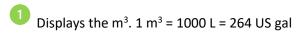
1 The pressure value is in the PRESSURE column for the Pump Station Control view.

Pumping station view by Transmitter - Tank level by pressure

The pressure value is in the Pressure Component box for the view by Transmitter.

Method 2: Via the interface of the DATACER™ station if it is this Transmitter that measures the pressure.

4.6.6 Sap flow and volume


The volume indicated on the maple sap meter and the associated calculations in the DATACER interface can be influenced by several parameters such as flow rate, the compliance of the installation, the presence of drainage water return, the presence of air bubbles, and the interference produced by drives and powerful electric motors. The

values displayed on the maple sap meter and the associated calculations in the interface are therefore worthwhile for evaluating the performance of each pumping station and making comparisons. It is not recommended to use maple sap meter data for the sale of water or maple sap concentrate.

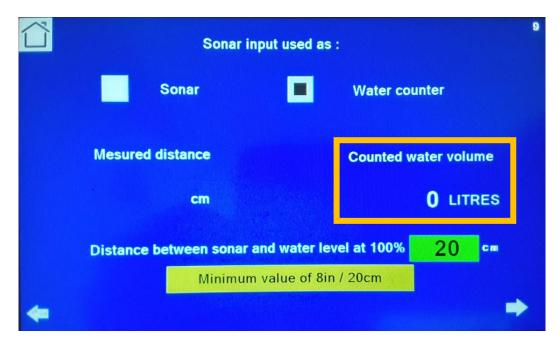
Method 1: on the maple sap meter

Maximum reading before resetting to 0: 99,999 m³

Dots to indicate the value of the digits after the decimal point.

Example:

If the number displayed in (1) = 00025, (2) = 3, (3) = 4, (4) = 6, and (5) = 8,


then the total volume flowing through the maple sap meter is 25.3468 m³ or 25,346.8 L or 6691.6 US gal.

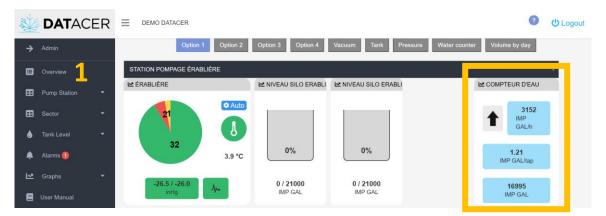
Calculation breakdown:

25.3468 x 264 = 6691.6 US gal

Method 2: on the DATACER station interface

Method 3: via the pump station control page on the DATACER™ interface

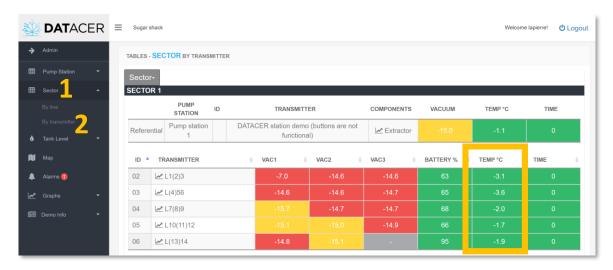
- 1. Click "Pump station"
- 2. Click "Pump station control"



The "RESET" button allows you to reset all the data measured by the maple sap meter to 0 (i.e., volume per hour, volume per tap, volume per day, and total volume).

Method 4: via the overview on the DATACER™ interface

1. Click "Overview"

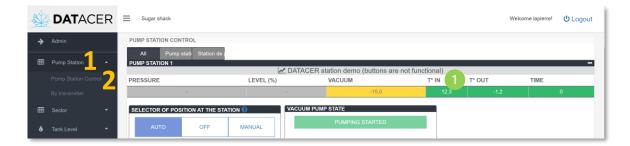


For more information on the overview, please see section 4.5, page 233.

4.6.7 External temperature at the line ends

- 1. On the DATACER™ interface, click on Sector.
- Click on view by Transmitter.

The external temperature is measured from a Sensor located inside the Transmitter. The Transmitter's exposure to sunlight may cause the temperature reading to increase.


4.6.8 Interior and exterior temperature of a pump station

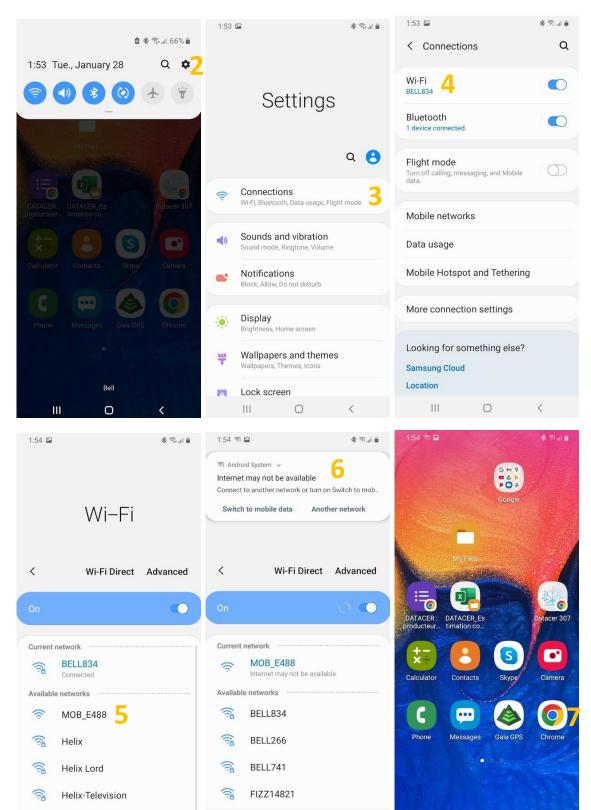
Method 1: Via the pump station tab.

- 1. On the DATACER™ interface, click on Pump Station.
- 2. Click on the Pump station control.

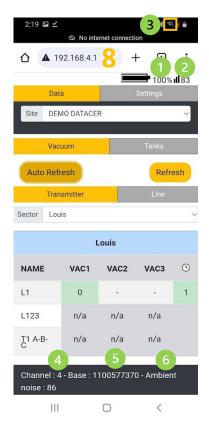
The value of the interior temperature of the station corresponds to column T °IN, the exterior temperature at column T °OUT.

Method 2: Via the interface of the DATACER[™] station.

4.6.9 View your data via the DATACER™ mobile

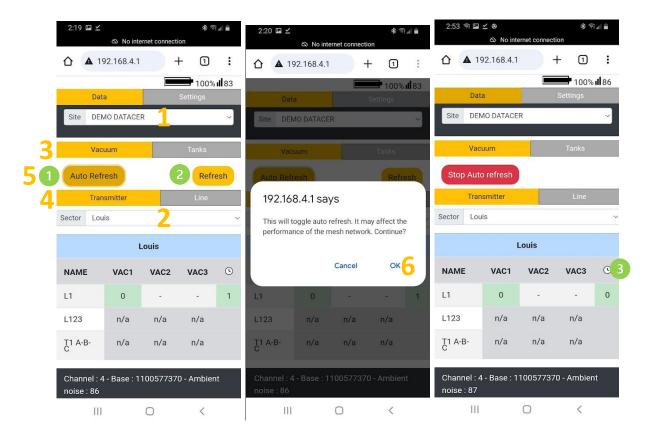

4.6.9.1 Open the DATACER™ mobile interface on your cell phone

1. Put the switch in the "on" position.


- 2. In the telephone, click Settings.
- 3. Click Connections.
- 4. Click WiFi.
- 5. Select the DATACER™ mobile WiFi network from the list of available networks. The network starts with MOB_SSID. See section 1.5, page 43 to find your 4-digit SSID.
- 6. Disregard the "Internet may not be available" message.
- 7. Open a browser page (we recommend Google Chrome or Safari).
- 8. Enter the login address 192.168.4.1

0

- Mobile battery charge level
- Radio signal strength between the mobile and one of the transmitters in the mesh network.


 X = no signal. 100 = excellent signal.
- WiFi signal strength between the mobile and the telephone.
- Mesh network coordinator radio channel. If the mesh network is managed directly by a DATACER™ base, then the channel displayed is that of the base. If the mesh network is managed directly by a DATACER™ gateway, then the channel displayed is that of the gateway.
- Mesh network coordinator radio address. If the mesh network is managed directly by a DATACER™ base, then the address displayed is that of the base. If the mesh network is managed directly by a DATACER™ gateway, then the address displayed is that of the gateway.
- Ambient noise indicates the level of radio interference. 100 = no noise. 40 = lots of noise.
- 4.6.9.2 Consult your system data on your cell phone via the DATACER™ mobile Prerequisites:

- Opened the DATACER™ mobile interface on your cell phone (see section 4.6.9.1, page 250).
- Imported the configuration file to the DATACER™ mobile (see section 3.2.21, page 154).
- 1. Select a site where you are currently located.
- 2. Select the sector in which the close by transmitters are located.
- 3. Select the "Vacuum" or "Basins" tab.
- 4. If you selected Vacuum, then please choose between the view by "line" or by "transmitter."

Selecting a transmitter or line from the list allows you to update only the vacuum levels of the lines belonging to the same transmitter. This allows the transmitter data to be refreshed more frequently.

- 5. Choose the update mode.
- Auto Update: Sends multiple queries to the DATACER™ base and allows the data to be updated continuously.
- ² Update: Sends a single query to the DATACER™ base and allows the data to be updated once.
- 6. Click OK.

This time corresponds to the refresh time of the data from the transmitter currently present in the DATACER™ interface + the time it took for the mobile to communicate with the DATACER™ base. For example, if the refresh time of a transmitter is 1 min. in the interface and it took 1 min. for the mobile to communicate with the DATACER™ base, then the time displayed in the mobile will be equal to 2 min.

The DATACER™ mobile must be able to communicate with a radio transmitter present in the sugar bush and be close enough to your phone.

- The distance between the mobile and one of the transmitters in the mesh network should be less than or equal to 150 m.
- The strength of the radio signal between the mobile and one of the transmitters in the mesh network should be greater than 25 (see ection 1.5, page 43).
- The "Network" indicator light on the mobile (see section 1.5, page 43) must indicate that the mobile is synchronized with the rest of the mesh network (quick flashes). Please see section 4.2.1, page 211 of the DATACER™ manual.
- The distance between the mobile and your phone should be less than or equal to 10 m.

4.6.10 View data and via the gateway

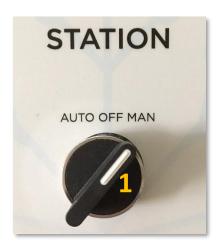
Prerequisites:

- Validate that the installation is compliant (see section 2.6, page 115).
- Validate that the settings are compliant (see section 3.4 page 187).
- Validate that the gateway is communicating with the base (see section 4.1.7, page 207).
- Validate that the radio transmitters and/or DATACER™ station(s) connected by cable are communicating with the gateway (see sections 4.1.8, page 208 and 4.1.10, page 210).

You can now consult your data and/or control your pumping station equipment via the DATACER™ interface.

4.7 Controlling the equipment locally

The DATACER™ station allows you to control some of your equipment locally in your pumping station if you wish.


Controls that use the station selector switch in the manual (MAN) position are to be used only for operations performed manually at the pumping station. In the manual (MAN) position, the DATACER™ station ignores remote controls and automatic controls such as start/stop temperature and vacuum modulation.

4.7.1 Starting/stopping a vacuum pump

This function allows the starting or stopping of the vacuum pump without any automatic function.

1. To force the start, turn the station Switch to the manual position (MAN).

The status of the vacuum pump on the interface then shows RUN.

2. To force the shutdown, turn the station selector switch to the OFF position.

The status of the vacuum pump in the interface indicates STOP.

4.7.2 Starting a water pump

1. Turn the pump control switch to the automatic position (AUTO).

2. Go to page 2 of the station, then press the WATER PUMP START button to force the water pump to start.

The two bottom electrodes must be in contact with the water.

4.7.3 Forcing the speed of a vacuum pump with a drive

1. Turn the station selector switch to the manual position (MAN).

2. Move the cursor of the speed of the D Drive from left to right on the interface of the station on page 1.

- You can view the percentage of the instantaneous speed of the vacuum pump in the VFD box.
- Moving the cursor to the right increases the speed.

Left Cursor: minimum speed. Right Cursor: maximum speed.



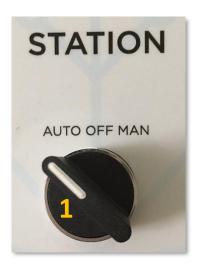
4.7.4 Forcing the Modulation Valve Open

1. Turn the station selector switch to the manual position (MAN).

2. Go to page 1 of the station, then move the valve opening slider from left to right.

- 1 You can view the percentage of opening of the modulation valve in the VALVE box.
- 2 Moving the cursor to the right opens the valve.

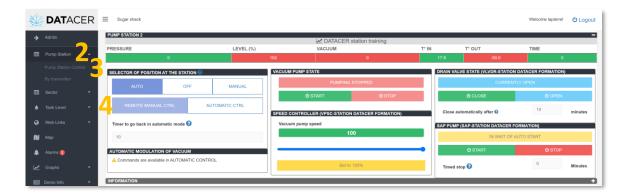
Cursor on the left: valve closed. Cursor on the right: valve fully open.


4.8 Controlling equipment remotely

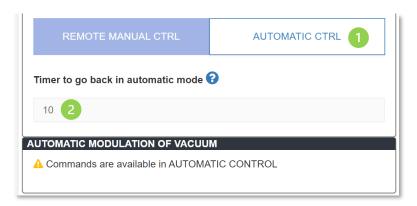
With the DATACER™ interface, you can remotely control your equipment the same way you do in your pumping station.

For these functions to be active, you must set the DATACER™ station's selector switch to AUTO and click the REMOTE MANUAL CTRL button on the DATACER™ interface (see below).

Furthermore, for the fields to be active on the DATACER™ interface, remember to activate the functions in Admin (see example in section 3.2.13 page 140).


1. Switch of the station to AUTO.

- 1 AUTOMATIC confirms that you are in automatic mode (AUTO) on the DATACER™ station.
- 2. On the DATACER™ interface, click on Pump Station.
- 3. Click on Pump Station Control.
- 4. Click on CTRL REMOTE MANUAL.



To continue using the automati SMS after your remote controls, proceed as follows:

Return to automatic mode on the DATACER™ interface by clicking on the AUTOMATIC CTRL button,

OR

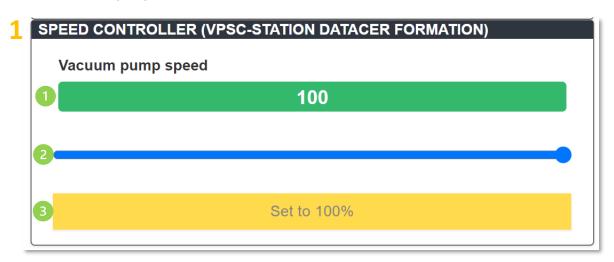
Enter a time in the timer to automatically switch back to AUTOMATIC CTRL. If you enter 0 minutes, you will remain in REMOTE MANUAL CTRL mode until you click on the AUTOMATIC CTRL button.

4.8.1 Starting/stopping a vacuum pump

Prerequisites (see section 4.8 page 260):

Station Switch at AUTO.

- On the DATACER™ interface, click on Pumping Station, then Pumping Station Control, then REMOTE MANUAL CTRL.
- 1. Scroll down the page to VACUUM PUMP STATUS, this space will allow you to start or stop the station's vacuum pump.



- 1 Shows you the operating status of your vacuum pump.
- These buttons allow you to START or STOP the vacuum pump.

4.8.2 Forcing the speed of a vacuum pump with a drive

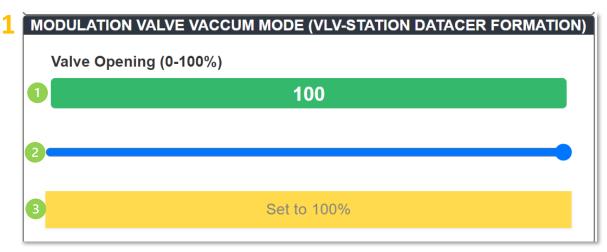
Prerequisites (see section 4.8 page 260):

- Turn the station Switch to the automatic position (AUTO).
- On the DATACER™ interface, click on Pumping Station, then Pumping Station Control, then REMOTE MANUAL CTRL.
- 1. Scroll down the page to SPEED CONTROLLER, this space will allow you to adjust the speed of the vacuum pump.

1 Indicates the current speed percentage of the vacuum pump.

Cursor that allows you to set the desired speed percentage.

Moving the slider to the right increases the speed.


Cursor on the left at 0%: minimum speed. Cursor on the right at 100%: maximum speed.

3 Used to confirm the setting and send the command to the DATACER™ station.

4.8.3 Forcing the Modulation Valve Open

Prerequisite (see section 4.8 page 260):

- Set the station Switch to automatic (AUTO).
- On the DATACER™ interface, click on Pumping Station, then Pumping Station Control, then REMOTE MANUAL CTRL.
- 1. Scroll down the page to MODULATION VALVE VACCUM MODE, this space will allow you to adjust the opening of the Modulation Valve.

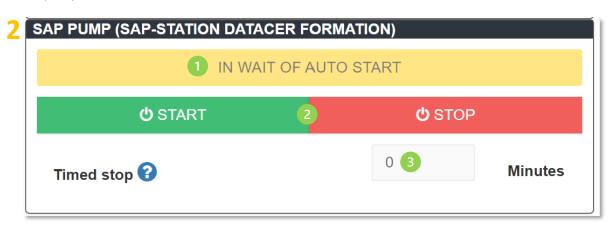
- 1 Indicates the percentage of opening of the Modulation Valve.
- 2 Slider that allows you to set the desired opening percentage.

Moving the slider to the right increases the percentage of valve opening. Left slider at 0%: minimum opening. Cursor to the right at 100%: maximum opening.

3 Used to confirm the setting and send the command to the DATACER™ station.

4.8.4 Starting/stopping a water pump

Prerequisites (see section 4.8 page 260):

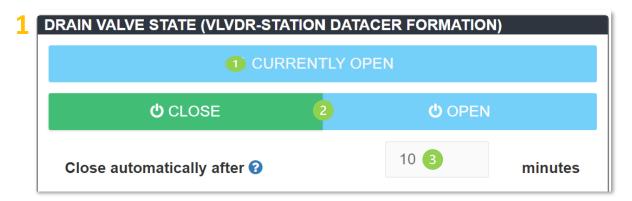

- Switch of the station at AUTO.
- On the DATACER™ interface, click on Pumping Station, then Pumping Station Control, then REMOTE MANUAL CTRL.

1. Turn the pump control switch to the AUTO position.

2. Scroll down the page to SAP PUMP, this space will allow you to start or stop the water pump.

- 1 Shows you the operating status of your water pump.
- 2 These buttons allow you to START or STOP the water pump.
- The forced shutdown time is the time for which the water pump will not start <u>under any</u> <u>condition</u> after clicking the Stop button. You must enter this time before clicking the Stop button.

Neither the Electrodes nor the JOG button on the pump control box will start the water pump. If a time of 0 minutes is sent, the pump will remain off until the next start command in the REMOTE MANUAL CTRL mode.



To deactivate the water pump's forced shutdown, click the "Start" button.

4.8.5 Open/Close Drain Valve

Prerequisites (see section 4.8 page 260):

- Switch of the station to AUTO.
- On the DATACER™ interface, click on Pumping Station, then Pumping Station Control, then REMOTE MANUAL CTRL.
- 1. Scroll down the page to DRAIN VALVE STATUS, this area allows you to open or close the Drain Valve.

- 1 Shows you the operating status of your Drainage Valve.
- These buttons allow you to OPEN or CLOSE the Drain Valve.
- The auto-close time is the time for which the Drainage Valve will not close **UNDER ANY CONDITION** after the Open button is clicked. This time must be entered before clicking the Open button.

Neither temperature nor pressure will close the valve. If a time of 0 minutes is sent, the valve will remain open until the next closing command in REMOTE MANUAL CTRL.

To deactivate the drain valve's forced opening, click the "Close" button.

4.8.6 Equipment remote control via the gateway

Prerequisites:

- Validate that the installation is compliant (see section 2.6, page 115).
- Validate that the settings are compliant (see section 3.4, page 187).

- Validate that the gateway is communicating with the base (see section 4.1.7, page 207).
- Validate that the radio transmitters and/or DATACER™ station(s) connected by cable are communicating with the gateway (see sections 4.1.8, page 208 and 4.1.10, page 210).

You can now consult your data and/or control your pumping station equipment via the DATACER™ interface.

4.9 Automate the control of your equipment

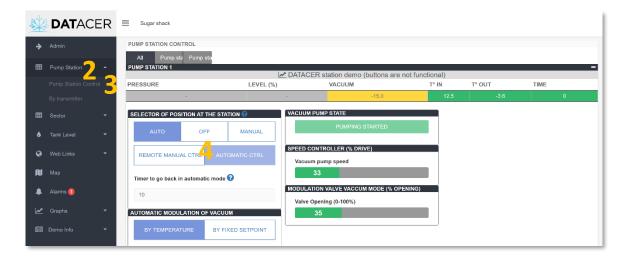
The DATACER™ system allows you to automatically control some of your equipment according to the value of some of the measured indicators. Some functions require to act on the interfaces.

In order for the vacuum level modulation features to be active on the DATACER™ interface, remember to activate the functions in Admin (see section 3.2.13 page 140).

4.9.1 Temperature-dependent start/stop of a vacuum pump

Principle:

The vacuum pump starts if the outdoor temperature measured by the DATACER™ station is equal to or higher than the start threshold. The vacuum pump stops if the outdoor temperature measured by the DATACER™ station is below the stop threshold.


Prerequisite: Set your temperature thresholds in the DATACER™ station (see section 3.3.1 page 177).

1. Switch of the station to AUTO.

- 2. On the DATACER™ interface, click on Pump Station.
- 3. Click on Pump Station Control.
- 4. Click on AUTOMATIC CTRL.

4.9.2 Stop/restart the vacuum pump via the Float in the Humidity Trap (safety for the vacuum pump)

Principle:

The vacuum pump stops when the Humidity trap is full. The pump starts again when the trap is empty.

Prerequisite: Install your Humidity Trap following the procedure described in section 2.5.13 page 115.

No manipulation is required for use in the interfaces. This function is active at all times.

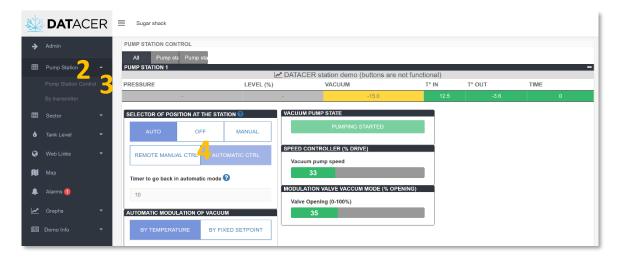
A red T indicator appears if the trap is full.

4.9.3 Modulation of the vacuum level at the Extractor according to the temperature

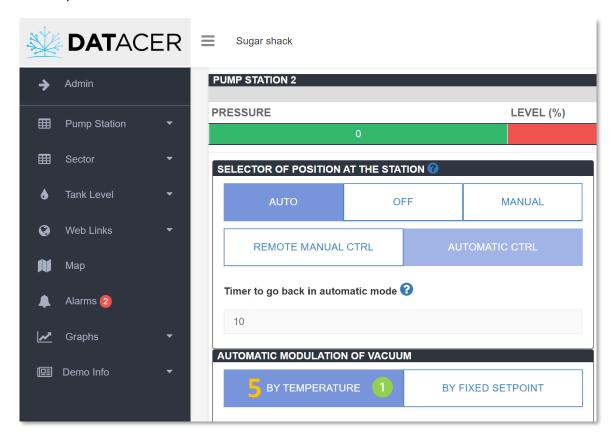
Principle:

The modulation valve and the speed of the vacuum pump, if it has a Drive, adjust according to the outside temperature to maintain the desired level of vacuum at the Extractor.

The desired vacuum level values for the temperatures are entered in the table on the DATACER™ station interface. The valve closes and the pump speed decreases, if the pump has a Drive, to lower the vacuum level in the network. The valve opens and the pump speed increases, if the pump has a Drive, to increase the vacuum level in the network.


Prerequisite:

- Install your Modulation Valve following the procedure (see la section 2.5.3 page 95).
- Set up your desired vacuum level table for different temperatures in the DATACER™ station (see section 3.3.2 page 178).
- 1. Switch of the station to AUTO.



- 2. On the DATACER™ interface, click on Pump Station.
- 3. Click on Pump Station Control.
- 4. Click on AUTOMATIC CTRL.

5. Scroll down the page to AUTOMATIC VACUUM MODULATION and click on the By Temperature button.

For information, the modulation type chosen on the DATACER™ base interface will be automatically updated on the DATACER™ station interface at the next communication and vice versa.

4.9.4 Modulation of the vacuum level at the Extractor according to a set vacuum value

Principle:

The modulation valve and the speed of the vacuum pump, if the pump has a Drive, are adjusted according to the vacuum value at the Extractor determined by the user.

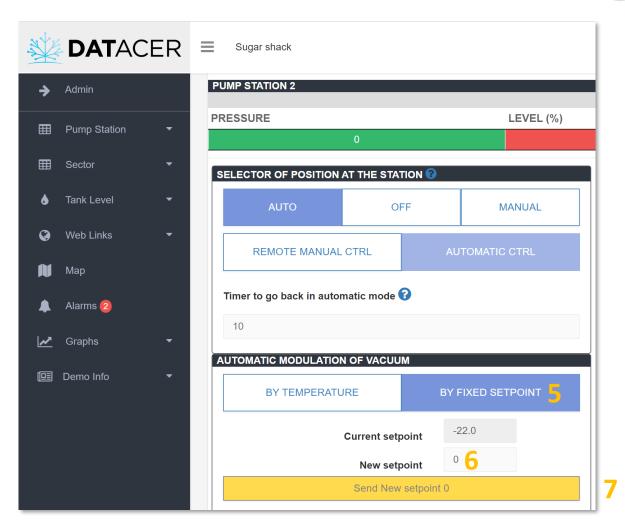
The valve closes and the pump speed decreases, if the pump has a Drive, to lower the vacuum level in the system. The valve opens and the pump speed increases, if the pump is equipped with a Drive, to increase the vacuum level in the system.

Prerequisite: Install your Modulation Valve following the procedure (see la section 2.5.3 page 95).

1. Switch of the station set to AUTO.



- AIACLI
- 3. Click on Pump Station Control.


2. On the DATACER™ interface, click on Pump Station.

4. Click on AUTOMATIC CTRL.

- 5. Scroll down the page and click on the by fixed setpoint button in the AUTOMATIC MODULATION OF VACUUM section.
- 6. Enter the desired vacuum value in the New Setpoint field.
- 7. Validate by clicking on the button Sending the new instruction.

For information, the type of modulation and the value of the vacuum setpoint chosen in the DATACER™ base interface will be automatically updated in the DATACER™ station interface at the next communication and vice versa.

4.9.5 Close the modulation valve if the water level in the Extractor exceeds a certain level (safety for the vacuum pump)

Principle:

If the Level Float positioned on the inner and upper part of the Extractor is activated, then the Modulation Valve closes. When the level drops, the Modulation Valve opens again.

Prerequisite: Install your Modulating Valve and Emergency Stop Float according to the procedure (see section 2.5.3 page 95 and section 2.5.4 page 97).

No manipulation is required for use in the interfaces. This function is active at all times.

A red F light appears when the Float is triggered.

4.9.6 Start/stop a water pump according to a pond level by Electrodes

Principle:

Three Electrodes are positioned in the Tank. The top one, the middle one and the reference electrode at the bottom. The pump stops if the liquid level falls below the middle electrode. The pump starts if the liquid touches the top electrode.

Prerequisite: Install your electrodes and water pump control following the procedure (see section 2.5.5 page 99).

1. Set the pump control switch to automatic (AUTO).

No manipulation is required for use in the interfaces. This function is active at all times.

To understand the order of priority for starting the water pump according to the different parameters, current functions, or remote controls, please see appendix 6.8, page 313.

4.9.7 Open/close a Drain Valve depending on the outside temperature and/or the pressure of a pipe

Principle:

The valve opens if the outdoor temperature is below the threshold. The valve closes if the outdoor temperature is above or equal to the threshold.

The valve can also open if the pressure in the tube where it is installed is greater than or equal to the threshold. If the valve opens according to the pressure, then it can stay open for a certain time.

You can decide to automate the opening of the Drain Valve according to temperature and/or pressure.

In the case where the opening/closing of the valve can be controlled according to temperature and pressure at the same time, if the valve opens according to one of the 2 parameters, then it remains open until the closing condition of the same parameter is reached.

Example:

If the valve opens according to the pressure in the tube for 30 min and the closing temperature is reached during this time, then the valve remains open. When the time has expired, the valve closes if conditions permit.

Prerequisite:

- Install your Drainage Valve following the procedure (see section 2.5.7 page 109).
- Set the opening and closing conditions of the Drain Valve on the DATACER™ station (see sections 3.3.3, 3.3.4 pages 179 and 180).

No manipulation is required for use on the interfaces. This function is active at all times.

To understand the order of priority for opening the drain valve according to the different parameters, current functions, or remote controls, please see appendix 6.8, page 313.

4.9.8 Stop the water pump if the drain valve is open

Principle:

Pump stops if Drain Valve is open.

Prerequisite:

- Install your Drain Valve following the procedure (see section 2.5.7 page 109).
- Check the condition PUMP OFF IF OPEN on the DATACER™ station (see section 3.3.5 page 181).

No manipulation is required for use in the interfaces. This function is active at all times.

To understand the order of priority for opening the drain valve according to the different parameters, current functions, or remote controls, please see appendix 6.8, page 313.

4.9.9 Opening/closing the air intake valve depending on the outside temperature (safety for the vacuum pump)

Principle:

The valve allows air into the pump without affecting the vacuum level in the Extractor. This ensures that the pump cools down after a certain vacuum level and prevents the pump from deteriorating.

Prerequisite:

Install your Air Intake Valve following the procedure (see section 2.5.8 page 110).

• Check the temperature lines that correspond to the vacuum level setpoints of the vacuum pump (see method in section 3.3.6 page 182).

No manipulation is required for use in the interfaces. This function is active at all times.

4.9.10 Line cleanup

Principle:

Allows a valve to be opened to inject compressed air into the water discharge pipe for a certain period of time after each water pump shutdown. Once the air valve closes, the drain valve opens and stays open for a specific period.

Prerequisites:

- Install your air valve according to the procedure (see section 2.5.8, page 110).
- Check the line drainer box and enter the opening periods for the air and drain valves (see method in section 3.3.7, page 183).

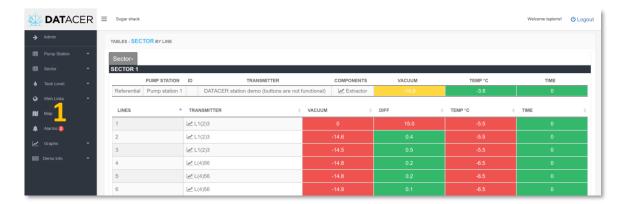
4.9.11 Last pumping of the day

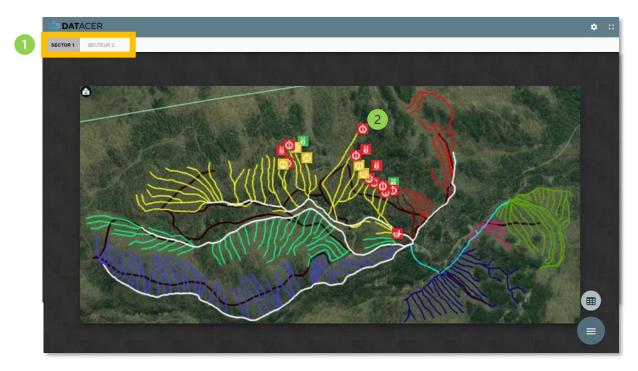
Principle:

Allows the water pump to be started when the temperature is lower than or equal to the drain valve opening temperature regardless of whether the "OPEN" box is checked.

Prerequisites:

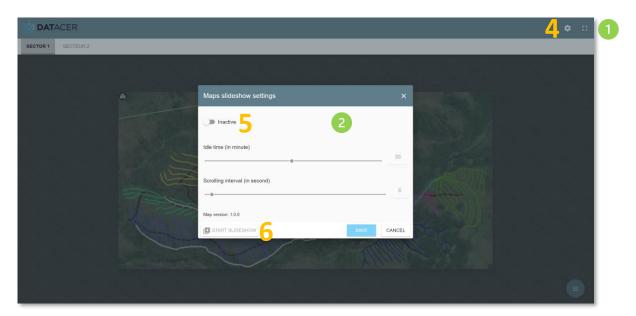
- Install your water pump control according to the procedure (see section 2.5.5, page 99).
- Check the "last pumping of the day" box and specify the starting temperature of the water pump (see method in section 3.3.8, page 184).


4.10 Maps


The maps in your system allow you to visualize in a different way your data displayed in the other tabs.

Prerequisite: Create your sector maps (see section 3.2.24 page 166).

1. On the DATACER™ interface, click on Maps to view your sector maps.


- 1 You can change the sector by clicking on the top tabs.
- The color of the icons changes according to the thresholds you have set (see section 3.2.6 page 130).
- 2. To view the data for the pumping station(s) in the area click on
- 3. Then on

- 4. To view the area map slideshow click on
- 5. Enable slideshow startup.
- 6. Start the slideshow.

- 1 Allows you to switch to full screen mode.
- 2 For the different settings see section section 3.2.24.2 page 169.

The slideshow will run until you move the mouse or click on the screen. To restart the slideshow, repeat the same procedure as above.

4.11 Alarms and notifications

Principle:

An alarm is generated on the DATACER™ interface if it is activated and when the measured value of an indicator is above or below the defined threshold. An SMS or email notification is sent directly to you to inform you that an alarm has been triggered.

If an alarm is deactivated, you cannot receive alarms on your DATACER™ interface or email or SMS notifications for this alarm. For an active alarm, it is possible to receive a SMS and/or email notification in addition to the alarm on the interface.

SMS or email notifications are sent every 5 minutes.

Prerequisites:

- To add or delete a contact (see sections 3.2.22.1, 3.2.22.2 pages 157 et 158)
- To add or remove an alarm (see section 3.2.22.3 page 160).
- To activate or deactivate an alarm (see section 3.2.22.6 page 164).
- To receive SMS and/or email notifications (see step 9 in section 3.2.22.3 page 160).

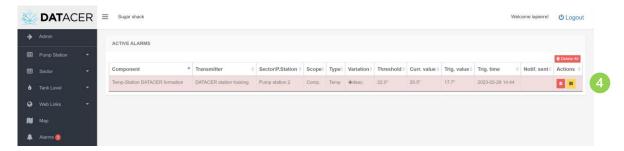
4.11.1 Viewing active alarms on the DATACER™ interface

On the DATACER™ interface, click on Alarm.

View 1: Manual reset alarm.

The sending of notifications is no longer active by default as long as the alarm appears in

this table. You have to remove it from this table by clicking on the red button that it can be reset if the measured value is above or below the threshold.


The alarm tab appears if there is at least one alarm activated in the Admin and it has been triggered. The number circled in red tells you if any alarms have been triggered and are present in the list of active alarms.

An alarm is displayed in red when it has been triggered and is currently faulty. The value of the measured parameter is then higher or lower than the set threshold.

An alarm is displayed in green when it has been triggered in the past and is not currently in default. The value of the measured parameter is then not in default with respect to the set threshold.

View 2: Automatic reset alarms

To reset an alarm automatically without having to delete it from the table, you must set an automatic reset time in Admin (see step 8 of section 3.2.22.3 page 160)

When the automatic reset time has elapsed, the alarm is automatically removed from this table if the current value is no longer in default.

To deactivate the automatic reset of the alarm (e.g. to stop receiving SMS or email notifications), click on the yellow button which will then turn green .

4.11.2 Viewing notifications received by SMS or email

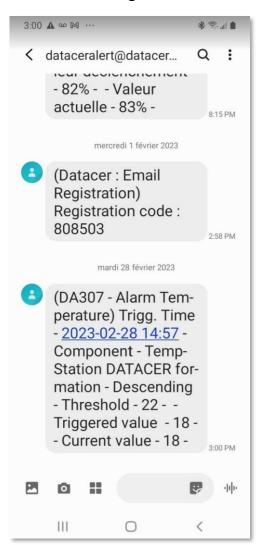
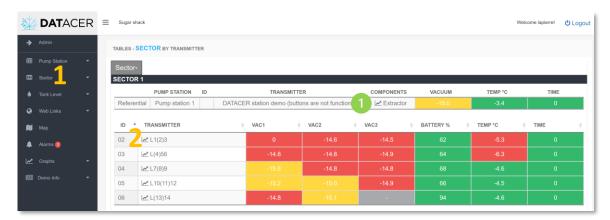
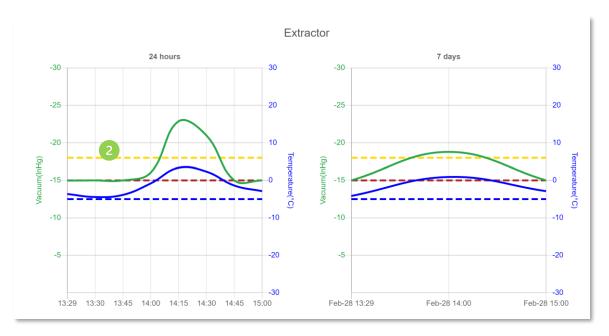


Figure 132: Example of notification sent by SMS if an alarm is triggered

Figure 133: Example of notification sent by email if an alarm is triggered

To receive notifications by SMS or email you must have added a contact, activated the notifications and activated the alarm (See prerequisites in section 4.11 page 280).



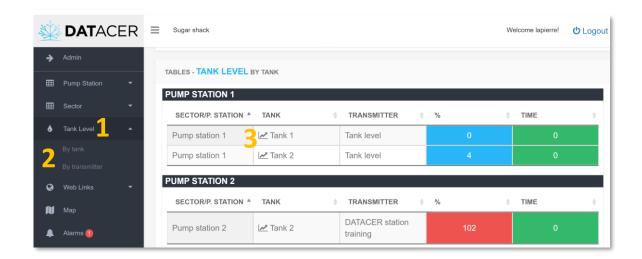

4.12 Graphs

The graphs allow you to visualize the evolution of the measured data over time. Your interpretation of the graphs will allow you to make better decisions during and after seasons.

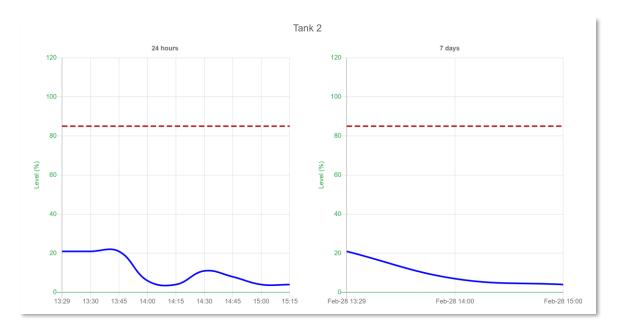
4.12.1 Vacuum level and temperature 24 / 7

- 1. On the DATACER™ interface, click on Sector, View by Line or Transmitter.
- Click on the grey button to generate the graph.

- Generate graph for vacuum level at the Extractor.
- On the graphs, the dotted horizontal lines are shown for information purposes. They represent, in yellow and red, the vacuum thresholds. The blue dotted line represents the

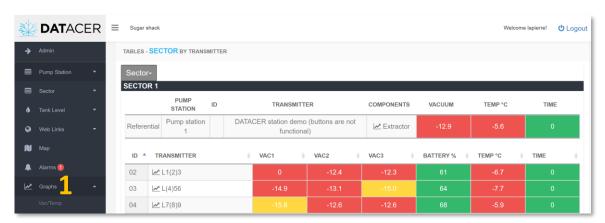


temperature threshold. These threshold values can be modified in the Admin menu (see section 3.2.6 page 130).


It is also possible to generate these types of graphs for Extractor vacuum levels via the Pumping Station tab if the DATACER™ station is used to measure the vacuum level at the Extractor.

4.12.2 Tank level 24 / 7

- 1. On the DATACER™ interface, click on Tank Level.
- 2. Click on view By Tank or By Transmitter.
- 3. Click on the grey button to generate the graph.

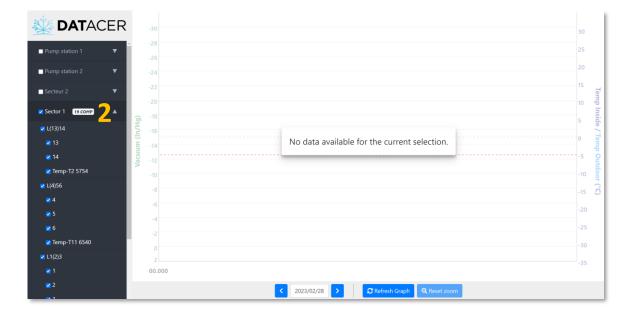


It is also possible to generate these types of graphs via the Pumping Station tab if the DATACER™ station is used to measure the Tank level.

4.12.3 Historical graph of vacuum level and temperature per day for a season

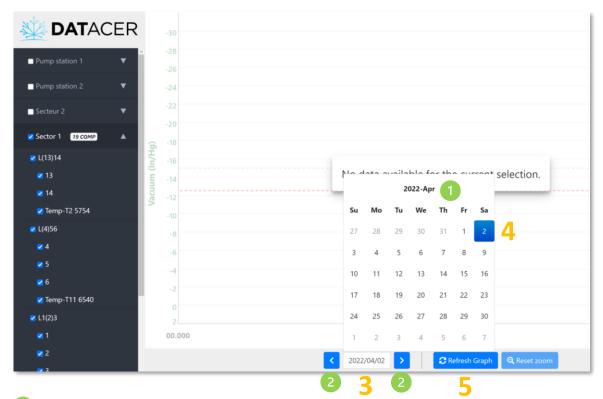
With this type of graph you have an update of the vacuum and temperature values every 10 minutes for 24 hours on every day of the season. You can also record your previous seasons.

1. On the DATACER™ interface, click on Graphs, then Vac/temp.



2. Select your sectors and pump stations.

You can then choose to display the desired vacuum levels and temperatures by sector or by pump station.



- 3. Click on the date space to display the calendar.
- 4. Choose a date (year, month, day) in the calendar.
- 5. Then click on Refresh Graphics.

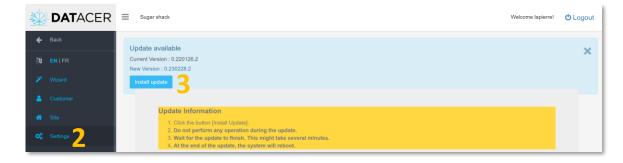
- Allows you to change the month and year.
- Allows you to change the date, one day at a time. The left arrow moves back one day. The right arrow moves forward one day.
- 6. Possibility to have information on each curve by positioning the mouse on the colored points on the curves. These points appear when the mouse cursor passes over the curves. With this method, it is possible to know the name of the line or the Extractor, the name of the Transmitter and other information.

If you change your selection on the left or the date at the bottom, please click on Refresh Graph again to update the screen.

4.13 Updating the DATACER™ database software

Prerequisite:

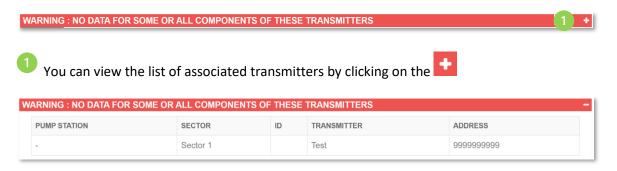
- The DATACER™ database must be connected to the Internet to receive updates (see sections 2.2, 4.1.1, 3.2.27 pages 59, 196 et 172.
- The update tool is activated (see section 3.2.8 page 133).
- Have an internet speed of 10 Mbps


If an update is available a message will appear at the top of your screen.

- 1. Click on Admin.
- 2. Click on Settings.
- 3. Click on Install the update and follow the on-screen instructions.

5. Problems and solutions

The most frequently encountered problems, their probable causes, as well as the associated solutions. Do not hesitate to contact your LAPIERRE representative or distributor if you need assistance.


5.1	Warning: No data for some or all of the components of these Transmitters	292
5.2	Data refresh time fluctuates randomly for Transmitters	292
5.3	Data refresh time fluctuates randomly for a group of Transmitters	293
5.4	Data refresh time increases for all Transmitters connected to a DATACER™ base	294
5.5	Tank level readings with an Ultrasonic Sensor are not consistent	294
5.6 vacuum t	Vacuum level reading = 0 inHg at line end and the exterior temperature read by the transmitter = -50°C	
5.7	Inconsistent tank level readings with pressure sensor	295
5.8	In automatic mode, vacuum pump starts/stops too often	296
5.9	I can't lower my vacuum differential in a line	296
5.10 pump	Impossible to modulate my vacuum level only by varying the speed of my vacuum	296
5.11	Modulating valve position does not change	297
5.12	Return pump does not start when water touches flow electrode	297
5.13	Water pump does not start following a remote manual start request	298
5.14	Unable to connect remotely to the DATACER™ interface via datacer.online	299
5.15	Volume count appears inconsistent	300

5.1 Warning: No data for some or all of the components of these Transmitters

Description of Problem:

Error message that appears at the top of the View by Line or View by Transmitter page in the Area tab. This message means that the Transmitter has never communicated with the DATACER™ base.

Causes:

- Adding a new Transmitter to the system.
- A Transmitter returns from repair.
- The added or repaired Transmitter is not yet communicating with the rest of the Mesh Network.
- The system computer (NUC) has been changed.

Solutions:

- Please ensure that all prerequisites and points of section 4.1.6 page 206 have been executed. In particular, check the address of the transmitter.
- Start an Address Initialization. See section 3.2.12 page 138.
- Check that the Transmitter is synchronized with the base and that the data communication is successful (See section 4.2 page 210).

5.2 Data refresh time fluctuates randomly for Transmitters.

Description of Problem:

The data refresh delay for a Transmitter fluctuates randomly in the Time boxes on the DATACER™ interface. In other words, the delay may vary between normal values (e.g., 0-2 min) and abnormal values (e.g., >10 min). This transmitter may also drain its batteries faster than other transmitters.

Causes:

- Weak signal strength with the rest of the Mesh Network
- The number of hops needed to get to the base is too high regardless of the path the communication can take.

Solutions:

- See section 2.1.2 page 54 and section 2.3 page 67 to optimize the signal strength of a Transmitter with the rest of the Mesh Network.
- See section 2.1.4 page 56 to optimize the number of Hops in a Mesh Network.
- If the timing was good the previous season, then make sure that all Transmitters were installed in the same location.

5.3 Data refresh time fluctuates randomly for a group of Transmitters

Description of Problem:

The data refresh delay for a group of Transmitters fluctuates randomly in the Time boxes on the DATACER™ interface. In other words, the delay can vary between normal values (e.g., 0-2 min) and abnormal values (e.g., > 10 min). These Transmitters may also drain their batteries faster than others.

Causes:

- Weak signal strength with the rest of the Mesh Network
- The Transmitter group does not have enough Paths to get to the base.
- The number of hops needed to get to the base is too high regardless of the path the communication may take.

- See section 2.1.2 page 54 and section 2.3 page 67 to optimize the signal strength of a Transmitter with the rest of the Mesh Network.
- See section 2.1.4 page 56 to optimize the number of Paths and Hops in a Mesh Network.
- If the timing was good the previous season, then make sure that all Transmitters were installed in the same location.

5.4 Data refresh time increases for all Transmitters connected to a DATACER™ base

Description of Problem:

The data refresh time for all the Transmitters connected to a DATACER™ base increases in the Time boxes on the DATACER™ interface. Autrement dit, une minute s'ajoute au délai de chaque Transmetteur à chaque rafraichissement de l'interface, soit à toutes les minutes.

Causes:

- The radio transmitter of the DATACER™ Base is switched off.
- Antenna connections connected to the base or antenna are unscrewed.

Solutions:

- Please make sure that the base station's radio transmitter adapter is plugged in and that the switch is in the ON position. See section 2.2 page 59 for the installation of the base and section 4.1.1 page 196 to switch on the radio transmitter from the base.
- Please ensure that the antenna connections are screwed on. See section 2.8 page 119 for the installation of cables and antennas.

5.5 Tank level readings with an Ultrasonic Sensor are not consistent

Description of Problem:

The Tank level percentage is not consistent with the volume of liquid actually contained in the Tank. For example, the percentage read is 90% when in reality the level is 50%.

Causes:

- Sensor wires are not properly connected to the transmitter board.
- The setting of the Ultrasonic Tank Level Sensor is not correct.
- The space between the Sensor and the ceiling is less than 2 ft (60.96 cm).
- The departure of the water pump causes vibrations transmitted by the Tank to the Sensor.
- The Ultrasonic Sensor is positioned too close to the liquid inlet in the Tank.

- Please make sure that your Sensor is properly connected. See section 2.4 page 73.
- Please make sure that your Sensor is properly configured. See section 3.2.18 page 146.
- Check that the distance between the Sensor and the ceiling is greater than 2 ft (60.96 cm). See section 2.4 page 73.
- Check that the sensor is away from the liquid inflow. See section 2.4 page 73.
- If the vibrations caused by the discharge pump are too high, be sure not to install the Sensor holder on the Tank.

5.6 Vacuum level reading = 0 inHg at line end and the exterior temperature read by the vacuum transmitter = -50°C

Description of Problem:

The vacuum level reading is equal to 0 inHg and the outdoor temperature read by the vacuum transmitter is equal to -50°C.

Cause:

Maple sap has entered one of the Transmitter's Vacuum Sensors. Therefore, there is a
good chance that the Vacuum Sensor will be broken. Moisture filters protect the
Vacuum Sensors from residual moisture in the tubes but cannot stop large amounts of
sap due to improper installation.

Solution:

• After repair, please ensure that the slope of the 5/16 pipe is downward from the transmitter to the end of line connection. See section 2.3 page 67.

5.7 Inconsistent tank level readings with pressure sensor

Problem description:

The tank level percentage is not consistent with the volume of liquid currently contained in the tank. For example, the percentage reading is 0.1%, whereas in reality the level is 50%.

Causes:

- If the sensor is connected to a DATACER™ station, it may be incorrectly configured in the DATACER™ station.
- Wrong sensor model selected in DATACER™ interface.

- If the sensor is connected to a DATACER™ station, check that the sensor selected is "Other sensor" on the last page of the DATACER™ station interface. Refer to section 3.3.9 on page 185.
- Check that the pressure sensor model selected when setting up the transmitter is the correct one in the DATACER™ interface. Refer to section 3.2.19 on page 150. After clicking on the blue button, click on the yellow pencil to check the selected sensor model.

5.8 In automatic mode, vacuum pump starts/stops too often

Description:

The vacuum pump starts/stops too often in automatic mode.

Cause:

- The temperature sensor is not correctly installed.
- The 2°C difference between the pump start and stop temperatures is not respected.
- The DATACER™ station has been installed too close to the drive or vacuum pump.
- Incorrect connection between the DATACER™ station and the drive (or relay box if there is no drive).

Solutions:

- Check that the temperature sensor is correctly installed. See section 2.5.10, page 111.
- Check that the difference in degrees Celsius between the pump start and stop temperatures is respected. See section 3.3.1, page 177.
- Check that the DATACER™ station is correctly installed. See section 2.5, page 87.
- Check the connections of the drive and vacuum pump start relay to the DATACER™ station. See section 2.5.1, page 89 and section 2.5.2, page 90.

5.9 I can't lower my vacuum differential in a line

Description of Problem:

After correcting my leaks, I can't get my vacuum level differential down in a line.

Causes:

- There are still leaks between the vacuum sensor and the extractor.
- Vacuum level readings can be influenced by several factors.

Solutions:

- Check for leaks to the vacuum sensor.
- Be aware of the factors that can influence the values read by the vacuum sensor at section 4.6.1 page 237.

5.10 Impossible to modulate my vacuum level only by varying the speed of my vacuum pump

Description of Problem:

The vacuum level at the Extractor does not follow the set points programmed in the DATACER™ station according to the exterior temperature. In other words, even at its minimum speed, the pump generates a vacuum level that is always higher than the vacuum set point programmed in

the station. For example, at 1°C the vacuum set point to be reached is -15 inHg, the pump speed is at minimum and the vacuum level read at the Extractor does not go above -20 inHg

Cause:

Even at minimum speed the vacuum pump is able to generate vacuum.

Solution:

• Put a modulation valve between the humidity trap and the extractor. For the description of a Modulating Valve see section 1.4.3 page 32 for installation see section 2.5.3 page 95, for available settings section 3.3.2 page 178 and to implement vacuum modulation section 4.9.3 page 268.

5.11 Modulating valve position does not change

Problem description:

The modulating valve is immobile. It cannot be used to vary the vacuum level as a function of temperature.

Causes:

- The modulation type remains fixed setpoint.
- If modulation is a function of temperature, then the vacuum values in the table are probably not appropriate.
- If there is an emergency stop float for a horizontal extractor, then the white cylinder may be mounted upside down.

Solutions:

- Make sure to select the correct modulation type from the DATACER™ interface or the DATACER™ station interface: section 4.9.3, page 268 for temperature-dependent modulation and section 4.9.4, page 270 for fixed setpoint modulation.
- Check the vacuum values entered in the modulation table in the DATACER™ station interface. See section 3.3.2, page 178.
- Adjust the white float cylinder so that the correct side can make contact. See section 2.5.4, page 97.

5.12 Return pump does not start when water touches flow electrode

Problem description:

Return pump does not start when water touches the flow electrode.

Causes:

- Installation or connection error of the DATACER™ water pump control or its electrodes.
- Wrong sensitivity setting on Lovato relay.
- Water pump control selector not correctly positioned.
- A forced shutdown of the water pump has been requested remotely from the DATACER™ interface.

Solutions:

- Make sure that the DATACER™ water pump control and its electrodes are properly installed and connected. See section 2.5.5 on page 99.
- Make sure that the sensitivity setting of the Lovato relay is correct. See section 2.5.5 on page 99.
- Make sure the water pump control selector is in the "AUTO" position. See section 4.9.6 on page 274.
- Click on "Start" to disable forced shutdown on the DATACER™ interface. See section 4.8.4 on page 263.

5.13 Water pump does not start following a remote manual start request

Problem description:

The water pump does not start following a remote manual start request. In other words, the water pump status remains "Waiting for auto start" and never changes to "Pumping in progress."

Causes:


- Poor radio communication with the DATACER™ station that manages the water pump control. DATACER™ station refresh times are too long.
- No water in the tank. This can be checked remotely if you measure the tank level with your DATACER™ system.
- Water pump not or no longer supplied with power (overload protection engaged,
 DATACER™ pump control selector switch in OFF position).
- Wrong Lovato relay sensitivity setting.

- Optimize the position of your radio transmitters and antennas to improve the responsiveness of the DATACER™ station (see section 2.1, page 53).
- Check the pump power supply and that the water pump control selector is set to "AUTO" (see section 4.8.4, page 263).
- Ensure that the Lovato relay sensitivity setting is correct. See section 2.5.5, page 99.

5.14 Unable to connect remotely to the DATACER™ interface via datacer.online Description of problem:

The following error message appears on your computer, tablet or cell phone screen.

Causes:

- The site address is incorrect.
- The DATACER™ base is not connected to the Internet.
- The computer or the router of the DATACER™ base is turned off.

- Check remote connection address, see section 4.4.4 on page 228.
- Check that your internet service is working (residential internet, hotspot...). You can for
 example connect to the WI-FI and try to do an internet search. If you have Internet, then
 the search should result in a valid Internet page. If you are using a cell phone, then
 please disable data usage to make sure that your internet search uses the data from
 your internet service and not from your phone subscription.
- Check that you have enabled the network connection on the interface. (See section 3.2.27 page 172)
- Check that the DATACER™ base is connected. See section 2.2 page 59.

- Turn off the DATACER™ base, wait 10 seconds and then turn it back on. See section
 4.3.1 page 216 for stopping and section 4.1.1 page 196 for starting up the DATACER™
 base. Please respect the order indicated.
- If it still doesn't work, please turn off the power, unplug the power adapters, and unplug the Ethernet cables from all your equipment, i.e., the Internet service and the DATACER™ base. Wait at least 30 seconds. Reconnect and turn on your equipment in the following order: 1) Internet service and 2) DATACER™ base. To connect and start the DATACER™ base, please refer to the sections indicated in the previous paragraph.

5.15 Volume count appears inconsistent

Problem description:

The volume recorded does not seem to reflect reality.

Causes:

- The maple sap flow is not within the maple sap meter's optimum flow range.
- Incorrect maple sap meter positioning.
- Failure to adhere to pipe diameters and lengths upstream and downstream of the meter.
- Flow direction is inverted.
- No check valve on the transfer pipe.
- Drainage volumes are accounted for.
- Air bubbles upstream of the meter.

- Please check that the maple sap meter model is suitable for the maple sap flow generated by the pump (see section 1.4.6 page 38).
- Please adhere to the installation procedure described in the installation section 2.5.6 page 102.
- Install a compressor with an air valve to reduce the drainage volume section 6.9 page 314.
- Please keep the DATACER station, the water meter, and the connection cables leading to the DATACER station at least 2 m (6 ft) away from any frequency inverters or powerful electric motors to avoid picking up as much interference as possible.
- If you have connected your water meter to a "sonar" input in a version 1.7 station, please install the electronic anti noise module that filters out interference. If you have connected your water meter to a "sonar" input in a version 1.8 station, please unplug it and plug it into the "In" input. (Refer to section 2.5.6 page 102).
- Avoid air bubbles at the pump suction as much as possible. Here are a few tips to improve your installation:
 - Add an angled bend in the extractor to prevent maple sap from running off at the pump suction (see Figure 134 below).

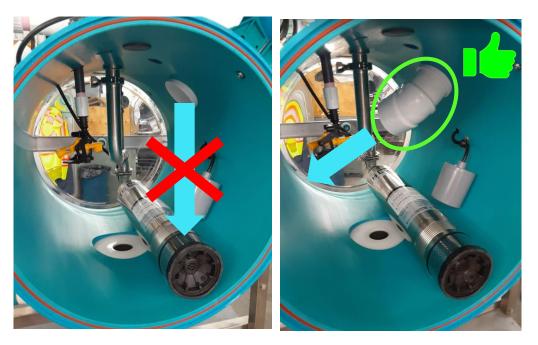


Figure 134: Installation of an angled bend inside the extractor to divert the maple sap flow in order to reduce air bubbles near the pump suction

 Relocate the maple sap inlet to prevent it from flowing into the suction side of the tank's sap pump at the tank outlet (see Figure 135 below).

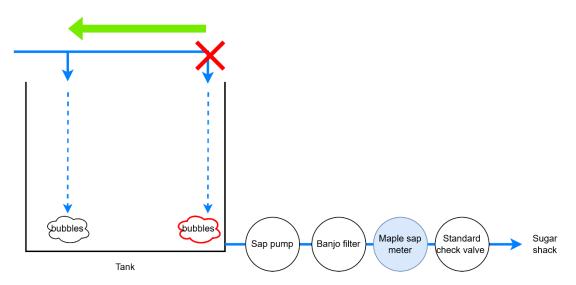


Figure 135: Move the maple sap inlet to prevent bubble formation at the pump suction.

If the tank's sap pump generates a vortex at the suction, you can install an anti-syphon (BA415-000000XX) in the tank to reduce it.

6. Appendices

Additional information.

6.1	E	quipment specifications	303
6.2	R	eminders of the steps for seasonal opening and closing of the DATACER $^{ exttt{ iny M}}$ system.	304
6.3	G	rounding an antenna	309
6.4	Sı	ummary of settings and use of control and automation functions	311
6.5	M	leaning of the lights on the DATACER™ station	312
6.6	In	dustry Canada Regulatory Compliance Notice	313
6.7	Fe	ederal Communications Commission (FCC) Statement	313
6.8	0	rder of priority for opening the drain valve and starting the water pump	313
6.9	C	ompressed air injection	314
	6.9.1	Choosing a compressor	314
	6.9.2	Installing the compressor and air valve at the numping station	314

6.1 Equipment specifications

		Margin of error	Cable length (ft)	Operation temperature (°C)	Storage temperature (°C)	Sealing - waterproofing
	Base	N/A	N/A	0 to +30	-20 to +25	IP32
	Station	N/A	N/A	-30 to +40	-30 to +40	IP43
	Mobile	N/A	N/A	0 to +35	+15 to +25	IP 50
	Passerelle	N/A	N/A	0 to +30	-20 to +25	IP32
Transmitters	Tank level transmitters (L,LL,LLL), pressure transmitters (P,PP,PPP) and combined transmitters (LV, LLV, PV, PPV, PLL, PLV)	N/A	N/A	-20 to +40	-30 to +70	IP43
	Vacuum transmitters (V,VV,VVV)	N/A	N/A	-20 to +40	-30 to +40	IP65
	Battery powered repeater	N/A	N/A	-20 to +40	-30 to +40	IP65
	Power cable repeater	N/A	N/A	-20 to +40	-30 to +40	IP65
	Vacuum sensor	+/- 1% (+/-0.3 inHg)	N/A	-25 to +40	-30 to +40	N/A
	Temperature sensor paired with vacuum sensor	+/- 2°C	N/A	-25 to +40	-30 to +40	N/A
	Sonar	+/- 1.5%	50	-25 to +40	-40 to +65	IP40
	Pressure sensor (0-150 or 300 or 1000 psi)	+/- 1.5%	25	-25 to +40	-25 to +65	IP40
Sensors	Level pressure sensor (0-34 feet)	+/- 1.5%	25	-25 to +40	-25 to +65	IP40
	Level pressure sensor (0-10 feet)	+/- 1.5%	50 or 100	-25 to +40	-25 to +65	IP40
	Level pressure sensor (0 -100 inches)	+/- 1.5%	15	-25 to +40	-25 to +65	IP40
	DATACER External temperature probe station	+/- 0.3°C	30	-25 to +40	-30 to +40	IP40
	DATACER Internal temperature probe station	+/-1°C	3	-25 to +40	-30 to +40	IP40
	Vacuum pump start relay	N/A	30	-25 to +40	-30 to +40	IP43
	Drive vacuum pump connection station	+/- 1%	15	-25 to +40	-30 to +40	IP43
	Modulation valve	+/-2%	16	-25 to +40	-30 to +40	IP40
	Emergency stop float / Horizontal extractor	N/A	20	-25 to +40	-30 to +40	IP40
DATACER	Emergency stop float / Vertical extractor	N/A	20	-25 to +40	-30 to +40	IP41
station	Water pump control	N/A	15	-25 to +40	-30 to +40	IP40
peripherals	Drain valve	N/A	30	-25 to +40	-30 to +40	IP40
	Water meter	+/-2% (if optimal flow)	20	0 à +50	0 à +50	IP65
	Air valve	N/A	30	-25 to +40	-30 to +40	IP40

6.2 Reminders of the steps for seasonal opening and closing of the DATACER™ system

INSTRUCTIONS FOR OPENING AND SEASONAL CLOSING
October 2025 | Version 03

LAPERRE EQUIPMENT © All rights reserved -2025

TABLE OF CONTENT

1.	DATACER system seasonal opening	.2
2	DATACER system seasonal closing	4
3.	Important information about your DATACER system	.5
4	DATACER user manual access the latest version	5

1. DATACER SYSTEM SEASONAL OPENING

- Verify that your equipment is properly connected. If necessary, please refer to the installation section of the user manual.
- If your system is normally accessed remotely, verify that your paid internet service (home router, cellular hotspot, satellite provider) is turned on.
- 3. Verify that the DATACER base's UPS battery is turned on (green indicator light on the on/off button).
- 4. Turn on the DATACER router for DATACER bases number less than 1200.
- 5. Make sure to connect the antenna cable and then turn on the DATACER base's radio transmitter.
- 6. Ensure that the system's computer (NUC) is turned on (blue indicator light on the on/off button).
- 7. Turn on the DATACER base's screen.
- 8. If you have one or more DATACER gateways, turn them on.
- 9. Set the DATACER base and gateway(s) to the installation synchronization.
- Connect the antennas and then turn on the DATACER tank level, pressure, combined transmitters, connected repeaters and DATACER station in your pumping stations.
- 11. Start the vacuum transmitters and repeaters.
 - a. Solars

Case 1: Transmitters have been left in the forest

Was sleep synchronization selected before switching off the DATACER base radio transmitter?

- → Yes, no physical start-up required
- → No, the transmitters have been physically turned off (switch to OFF). Therefore, turn on the transmitters (switch to ON) starting from the closest to the furthest from the DATACER base or gateway.

Case 2: Transmitters were stored inside

- Insert the batteries and take the switched-off transmitters outside to expose them to light. A few days of exposure may be necessary to initiate battery recharging
- Turn the transmitters on and have them communicate with the DATACER base to check their charge level.

DATACER | Instructions for opening and seasonal closing | Version 03 - october 2025

MATACER™

Install the transmitters in the woods when the battery charge level is at least 50%.

- iii. Turn off transmitters
- iv. Install and switch on the transmitters in the forest one by one, starting with the closest to the DATACER base or gateway and ending with the ones furthest from it.
- Ensure that the signal strength with the rest of the network is good (green or blue light for the radio LED) and that data communication to the DATACER base was successful (steady red light for the channel LED).

Please handle your transmitters with care to avoid damaging the solar panels.

Do not mix several types of batteries in the same transmitter. For a solar transmitter, only use 3 rechargeable batteries with the solar panel connected to the card.

For case 1 and 2 above, leave the system in sleep synchronization until the desired start date for using the system, then change the synchronization as needed. Depending on the number of transmitters, switching from synchronization to another synchronization could take several hours.

The transmitters require rechargeable D NiMH batteries of at least 10 000 mAh. The batteries provided with your transmitters have been duly qualified to meet the requirements of the DATACER system.

b. Non solars

Case 1: Transmitters were stored inside

- Turn on the transmitters near the DATACER base or gateway.
- ii. Ensure that data communication times are less than 1 minute on the DATACER interface.
- iii. Check the battery charge level on the interface and replace them if necessary.
- iv. Turn off the transmitters.
- Install and turn on the transmitters one by one in the forest, starting with the closest to the DATACER base or gateway and ending with the ones furthest from it.
 - For models with a green radio LED only, ensure that the transmitter is synchronized with the rest
 of the network (5 quick flashes for the radio LED).
 - For models with yellow, red, green, and blue light for the radio LED, ensure that the signal strength with the rest of the network is good (green or blue light for the radio LED) and that data communication to the DATACER base is successful (steady red light for the channel LED).
- vi. Once the installation is complete, change the synchronization to operation.
- vii. The next day, check that the communication times of all transmitters are between 0 and 1 minute, or in the same order of magnitude as what you observed the previous year.
- viii. Change the synchronization of the DATACER base and gateway as needed.

Case 2: Transmitters have been left in the forest (models delivered after October 1*, 2024)

- i. Insert the batteries.
- Follow the same steps as case 1 below, starting from step v.
 DATACER | Instructions for opening and seasonal closing | Version 03 october 2025

3

2. DATACER SYSTEM SEASONAL CLOSING

- Stopping vacuum transmitters and repeaters.
 - a. Solars

Case 1: Transmitters are left in the forest

Sleep synchronization is available

- i. Set the DATACER base and/or gateway synchronization to sleep.
- Please wait for the communication times for each solar vacuum transmitter to change from 15 minutes to 0 minutes every 15 minutes. This will ensure that sleep synchronization is in place for all transmitters.

Sleep synchronization is not available

- Check with your Lapierre dealer to assess available solutions for enabling sleep synchronization.
- Otherwise, turn off the transmitters (switch to OFF).
- iii. Leave the batteries inside the transmitters.

Case 2: Transmitters are stored inside

Transmitters should be stored in the OFF position in a cool, dry place. Batteries should be removed from the transmitters. Leave transmitter doors ajar.

Please handle your transmitters with care to avoid damaging the solar panels.

b. Non solars

Case 1: Models delivered before October 1st, 2024

These transmitters should be stored indoors during the off-season in a cool, dry place and leave transmitter doors ajar.

Turn off the transmitters and remove the batteries as soon as the season is over.

Case 2: Models delivered after October 1th, 2024

These models can be left in the forest year-round.

Turn off the transmitters and remove the batteries as soon as the season is over.

- 2. Turn off the tank level, pressure transmitters, connected repeaters and DATACER stations.
- Disconnect the antenna cables.
- 4. Turn off the radio transmitter on the DATACER base and gateway(s).
- 5. Disconnect the antenna cables.
- 6. Turn off the DATACER router for DATACER bases number less than 1200.
- Leave the computer (NUC) running and connected to the UPS battery. The indicator light on the NUC's on/ off button should remain blue, and the indicator light on the UPS battery on/off button should remain green.

DATACER | Instructions for opening and seasonal closing | Version 03 - october 2025

Leaving your computer running helps protect the integrity of the data stored on it and ensures that it is ready to use at the start of the next season. To do this, you must leave the computer's power adapter connected to the overload protection and back-up battery (UPS).

- 8. Turn off the DATACER base screen.
- Turn off your internet service (home router, cellular hotspot, satellite provider) if it is used only for the DATACER system.

To limit lightning-related problems, we strongly recommend unplugging all cables and electrical adapters connected to the bases (except the «NUC» computer), routers, screens, stations, gateways and combined transmitters at the end of the season.

3. IMPORTANT INFORMATION ABOUT YOUR DATACER SYSTEM

 DATACER system number:
 Channel:

 Admin
 Remote connection

 User
 Password

4. DATACER USER MANUAL, ACCESS THE LATEST VERSION

You can access the latest version of the user manual on our website by selecting DOCUMENTS, then USER MANUALS.

Canada: Click here

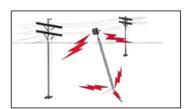
USA: Click here

You can also access it using these QR codes.

Canada

USA

DATACER | Instructions for opening and seasonal closing | Version 03 - october 2025


6.3 Grounding an antenna

OUTDOOR INSTALLATION WARNING IMPORTANT SAFETY MEASURES

WARNING, DANGER OF DEATH!

Please follow these guidelines and the specific instructions that accompany the equipment you are installing. | **IMPORTANT** | Inspect the site before beginning installation to anticipate potential hazards.

ANY CONTACT WITH HIGH VOLTAGE LINES CAN BE FATAL

Make sure there are no power lines in the area of the installation. Antennas, masts, towers, ropes and guy wires can come in contact with high voltage lines.

Personnel can be injured or killed if they touch power lines or hold a piece of equipment that comes in contact with power lines.

Ensure that there is NO RISK of direct or indirect contact between equipment or people and high voltage power lines.

Assume that all overhead cables are high voltage cables.

The horizontal distance between a tower, mast or antenna and the nearest high voltage line should be at least twice the total length of the mast/antenna combination.

TO AVOID AN ACCIDENTAL FALL, FOLLOW SAFETY PROCEDURES WHEN WORKING AT HEIGHTS ABOVE THE GROUND

- Choose a location that will allow for easy and safe installation of the equipment.
- Never work alone. A friend or co-worker can save your life in case of an accident.
- Use approved non-conductive ladders and other safety equipment. Make sure equipment is in good condition.
- If a tower or antenna starts to fall, don't try to hold it. Step back and let the equipment fall.
- If a cable or pole comes in contact with a high voltage line, DO NOT TOUCH IT OR TRY TO REMOVE IT. Call your local power company immediately.
- Do not attempt to erect antennas or towers on windy days.

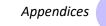
MAKE SURE THAT ALL TOWERS AND MASTS ARE WELL GROUNDED AND THAT THE ELECTRICAL CABLES CONNECTED TO THE ANTENNAS ARE EQUIPPED WITH A LIGHTNING ARRESTER

This precautionary measure helps prevent fire damage and personal injury that may result from lightning, static buildup, or short circuits in equipment connected to the antenna.

• The base of the antenna tower or mast must be connected directly to the building ground or to one or more approved ground rods using OAWG ground wire and corrosion-resistant connectors.

- Consult the National Electrical Code for more information on grounding.
- Surge protectors are available for coaxial antenna feeder cables.

IF A PERSON COMES INTO CONTACT WITH A POWER SOURCE AND IS UNABLE TO MOVE


- DO NOT TOUCH THE PERSON, AS THIS MAY RESULT IN ELECTROCUTION.
- Use a dry, non-conductive sign, stick or rope to push or pull the person away from the electrical source.
- When the person is no longer in contact with the electrical source, perform artificial respiration (CPR) if you are certified as a first responder and ensure that first responders have been contacted.

WARNING LABEL

This warning label should be affixed to the antenna in a manner that is clearly visible to installers and maintenance personnel. If there is no space on the antenna, it is recommended that the label be affixed to a mounting bracket or mounting location (such as a mast) near the antenna.

The label shown may differ from the one affixed to your equipment.

6.4 Summary of settings and use of control and automation functions

	Function / Feature		Settings			Use						
						DATACER station selector switch position		DATACER interface options				
		. [None	DATACER station interface	DATACER Interface	AUTO	OF F	MAN	Manual Control remote	Automatic Control	Modulation based on temperature	Modulation based on set value
0	Starting/stopping vacuum pump(s)	255	Х				Х	Х				
Controlling	Starting a water pump	257	Х									
equipment	Forcing the speed of a vacuum pump with a drive	258	Х					Х				
locally	Forcing the Modulation Valve Open	259	Х					Х				
	Starting/stopping vacuum pump(s)	261			Х	Χ			Х			
Controlling	Forcing the speed of a vacuum pump with a drive	262			Х	Χ			Х			
equipment	Forcing the Modulation Valve Open	263			Х	Χ			Х			
remotely	Starting/stopping a water pump	263			Х	Χ			Х			
	Open/Close Drain Valve	265			Х	Х			Х			
	Temperature-dependent start/stop of vacuum pump(s)	266		Х		Χ				Х		
	Stop/restart the vacuum pump via the Float in the Humidity Trap	267	Х									
	Modulation of the vacuum level at the Extractor according to the temperature	268		Х		Χ				Х	Х	
	Modulation of the vacuum level at the Extractor according to a set vacuum value	270				х				Х		Х
Automate	Close the modulation valve if the water level in the Extractor exceeds a certain level	273	Х									
the control of	Start/stop a water pump according to tank level by Electrodes	274	Х									
your equipment	Open/close a Drain Valve depending on the outside temperature and/or the pressure of a pipe	275		х								
	Stop the transfer pump if the drain valve is open	276		Х								
	Opening/closing the air intake valve depending on exterior temperature	276		Х								
	Line cleanup	277		Х								
	Last pumping of the day	277		Х								

6.5 Meaning of the lights on the DATACER™ station

- D1 | Water Pump: If lit for 3 seconds, the station will ask you to start the water pump.
- D2 | Water Pump: If it remains on, the station prevents the pump from starting.
- D4 | Water Pump: If lit, the pump is running.
- D5 | Drain Valve: If lit, then the valve is opening.
- D6 | Drain Valve: If lit, then the valve is fully open.
- D7 | Drain Valve: If lit, then the valve is fully closed.
- D8 | Vacuum Valve (Air Intake Valve): If lit, then the valve is opening or is fully open.

- D6 | Vacuum control : If lit, the vacuum pump is on.
- D9 | Humidity trap: If lit, the switch is closed and the trap is empty. This is the normal position.
- D11| Input (Emergency Stop Float): If lit, then the switch is closed and indicates that the Extractor may overflow.

In | Water meter: If it is on or off, the flow rate is nonexistent or insufficient to be counted.

If it is flashing, the flow rate is sufficient to be counted.

6.6 Industry Canada Regulatory Compliance Notice

This Class A digital apparatus complies with Canadian ICES-003.

6.7 Federal Communications Commission (FCC) Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules.

These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.

This equipment generates, uses and can radiate radio frequency energy. It may also cause harmful interference to radio communications if not installed and used in accordance with the instruction manual.

Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- This device may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation.

6.8 Order of priority for opening the drain valve and starting the water pump

Priority for opening the drain valve:

- 1. Pressure if the pressure box is checked (Pressure measured ≥ threshold).
- 2. Remote opening or closing control.
- 3. Opening because line cleanup sequence in progress.
- Temperature if opening temperature box is checked (Temperature measured ≤ opening threshold then the valve opens. Temperature measured ≥ closing threshold then the valve closes).

Priority for stopping the water pump:

- 1. Pressure if pressure box is checked (Pressure measured ≥ threshold).
- 2. Remote stop control.
- 3. If the drain valve is open and the "Pump stops when valve is open" box is checked except during the line cleanup cycle.
- 4. Start or stop the pump by electrodes. Start by a level if programmed.

6.9 Compressed air injection

Adding a compressor and air valve allows most of the water contained in a discharge pipe to be drained after the pump is stopped. As a result, the error of double counting the drained volume will be minimized.

6.9.1 Choosing a compressor

The compressor should have the following characteristics:

- Food-grade
- Dry (no oil)
- If the compressor runs on oil, replace the oil with a food-grade oil. Replace the oil filter as well.
- Install an air filter at the compressor outlet and replace it when necessary.

Here are a few examples of compressors used by different customers according to the volume to be drained and the height difference.

	Drain tube Compressor						Result observed	
Ex	Length (ft)	Diameter (in)	Volume of maple sap to be drained (ft³)	Height difference between pump and highest point of discharge tube (ft)	Compressed air flow rate in ft ³ /min at 90 psi	Max pressure (psi)	Volume (US gal)	% residual water returning to the station following an air injection
1	2500	1.25	21	250	11.5	150	60	30
2	1200	1	7	20	2.6	150	6	20

Ensure that the air pressure generated by the compressor is not greater than the pressure that the piping can withstand.

For more information and to finalize your choice, please contact a professional specializing in compressor sales.

6.9.2 Installing the compressor and air valve at the pumping station

Please install a spring-loaded check valve between the air valve and the discharge line to prevent any maple sap from returning to the compressor.

Never inject compressed air upstream of the maple sap meter, as this could damage it.

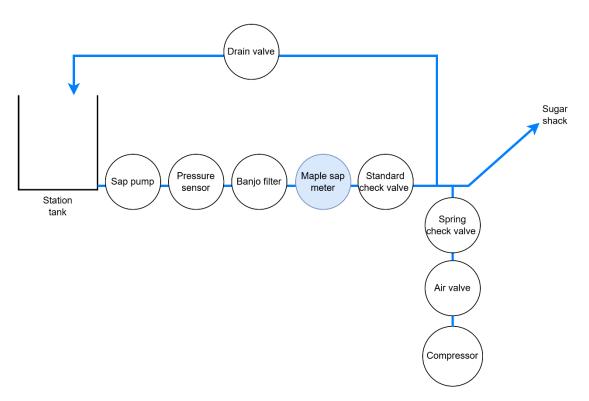


Figure 136: Installation of a maple sap meter in a pumping station on the discharge line of a basin in the presence of drainage

We sincerely appreciate your trust. **Thank you!**

LAPIERRE EQUIPMENT © All rights reserved - 2025